
APPM5450 — Applied Analysis: Section exam 2 — Solutions
8:30 – 9:50, March 19, 2014. Closed books.

Problem 1: (12p) Let A be a self-adjoint bounded compact linear operator on a separable Hilbert
space H. Which statements are necessarily true (no motivation required):

(a) H has an ON-basis of eigenvectors of A.

TRUE. (Note that when A has a null-space, you can just add an ON-basis for the null-space
to the set of evecs associated with non-zero evals.)

(b) If (en)
∞
n=1 is an ON-sequence, then lim

n→∞
||Aen|| = 0.

TRUE. You know that en ⇀ 0, and since A is compact, it follows that Aen → 0.

(c) For any λ ∈ C, the subspace ker(A− λI) is necessarily finite dimensional.

FALSE. If λ = 0, then the nullspace can be infinite dimensional.

(d) σc(A) = ∅.
FALSE. The origin can be in the continuum spectrum.

(e) σr(A) = ∅.
TRUE. Since A is self-adjoint.

(f) ||A|| is necessarily an eigenvalue of A.

FALSE. It is possible that only −||A|| is an eval.

Problem 2: (12p) Let P be a projection on a Hilbert space H. Which of the following statements
are necessarily correct (no motivation required):

(a) The spectral radius r(P ) is either precisely zero or precisely one.

TRUE. This follows from r(P ) = limn→∞ ||Pn||1/n and Pn = P .

(b) σ(P ) ⊆ {λ ∈ C : |λ| ≤ 1}.
TRUE. This follows from (a).

(c) σ(P ) ⊆ R.

(This problem is harder than I had intended. No points were deducted.)

(d) If P is orthogonal, then σ(P ) ⊆ {0, 1}.
TRUE. You know that σ(P ) is real, and that P = I on its range.

(e) If ||Px|| = ||x|| for every x ∈ H, then P is necessarily the identity.

TRUE. Recall that P = I on its range, and if ||Px|| = ||x|| for every x, then ker(P ) = {0}.
(f) If there exist x ∈ ran(P ) and y ∈ ker(P ) such that ⟨x, y⟩ ̸= 0, then ||P || > 1.

TRUE. See proof that P is S-A iff ||P || = 1 or 0.

Problem 3: (25p) Let H be a Hilbert space, and let A be a bounded linear operator on H, so
that A ∈ B(H).

(a) Define the resolvent set ρ(A).
(b) Prove that ρ(A) is an open set.

See course notes for solution.



Problem 4: (25p) Define a map T : S(R) → C via

T (φ) = lim
ε↘0

(∫ −ε

−∞

1

x
φ(x) dx+

∫ ∞

ε

1

x
φ(x) dx

)
.

Prove that T is a continuous functional on S. (You do not need to prove linearity.) What can you
say about the order of T?

Note: Recall that the order of a distribution is the lowest number m for which a bound of the
form |T (φ)| ≤ C

∑
ℓ≤k

∑
|α|≤m ||φ||ℓ,α holds.

Solution: Set ψ(x) =
φ(x)− φ(−x)

x
.

For x > 0, we find that |ψ(x)| = | 1x
∫ x
−x φ

′(y)dy| ≤ 2||φ||1,0.

For x > 0, we also find that |ψ(x)| = |x|−1(1 + x2)−1/2(1 + x2)1/2|φ(x) + φ(−x)| ≤ 1
x2 2||φ||0,1.

Via a change of variable, we find T (φ) = limε↘0

∫∞
ε ψ(x) dx. Note that ψ is a continuous bounded

function, so the limit exists and T (φ) =
∫∞
0 ψ(x) dx. Then

|T (φ)| =
∣∣∣∣∫ 1

0
ψ(x)dx+

∫ ∞

1
ψ(x)dx

∣∣∣∣ ≤ ∫ 1

0
2||φ||1,0dx+

∫ ∞

1

1

x2
2||φ||0,1dx = 2||φ||1,0 + 2||φ||0,1.

This proves that T has order at most 1. Two points were deducted if you omit the “at most” part.

Full credit was awarded without providing a proof that the order cannot be 0. But for completeness,
this part of the arguments can be done as follows: For n positive, pick φn ∈ S such that

• |φn(x)| ≤ 1 for all x.
• |φn(x)| = 0 for all x such that |x| ≥ 2.
• φn(x) ≥ 0 for x ≥ 0.
• φn(x) ≤ 0 for x ≤ 0.
• φn(x) = 1 for x ∈ [1/n, 1].
• φn(x) = −1 for x ∈ [−1,−1/n].

Observe that then ||φn||0,k ≤ 5k/2 for every n, but

T (φn) ≥
∫
1/n≤|x|≤1

1

x
φ(x) dx =

∫
1/n≤|x|≤1

1

x
dx = 2

∫ 1

1/n

1

x
dx = 2 log(n) → ∞.

Incidentally, observe that for this sequence, we must necessarily have ||φn||1,0 = ||φ′
n||u ≥ n, since

φn changes from the value -1 to value 1 in the distance 2/n.



Problem 5: (24p) Consider the Hilbert space H = L2(R). For this problem, we define H as the
closure of the set of all compactly supported smooth functions on R under the norm

||u|| =
(∫ ∞

−∞
|u(x)|2 dx

)1/2
.

Which of the following sequences converge weakly in H? Motive your answers briefly.

(a) (un)
∞
n=1 where un(x) =

{
1− |x− n|, for x ∈ [n− 1, n+ 1],
0, for x ∈ (−∞, n− 1) ∪ (n+ 1,∞).

(b) (vn)
∞
n=1 where vn(x) = sin(nx) e−x2

.

(c) (wn)
∞
n=1 where wn(x) =

{
1− |x/n− 1| for x ∈ [0, 2n]
0 for x ∈ (−∞, 0) ∪ (2n,∞).

Solution: Let Ω denote the set of smooth functions with compact support. These are by definition
dense in H. We use the theorem that says that a sequence is weakly convergent iff it is bounded,
and you have weak convergence when measured against any member in a dense set. In the solution,
we use Ω as the dense set.

First observe that (un) and (vn) are bounded, but (wn) is not. We can immediately rule out (wn).

Fix f ∈ Ω. Set M = sup{|x| : f(x) ̸= 0}. Since f has compact support, M is bounded. Now if
n > M + 1, we find that (un, f) = 0, so obviously limn→∞(un, f) = 0. This shows un ⇀ 0.

Again fix f ∈ Ω, and set g(x) = e−x2
f(x). Then as n→ ∞,

|(vn, f)| = |
∫ ∞

−∞
sin(nx)g(x) dx| = | − 1

n

∫ ∞

−∞
cos(nx)g′(x) dx| ≤ 1

n

∫ ∞

−∞
|g′(x)| dx→ 0.

We use that g has compact support so the boundary terms in the partial integration vanish, and∫
|g′| <∞. This shows vn ⇀ 0.

In summary, (un) and (vn) both converge weakly to zero, but (wn) does not converge weakly.


