APPM5450 — Applied Analysis: Section exam 1 — Solutions 8:30 — 9:50, February 10,
2014. Closed books.

Problem 1: Consider the Hilbert space H = ¢?(N), and the operator
A(.Tl, o, 3, .. ) = ()\1.’151, )\21‘2, )\3563, .. .),

where (A,,)72 is a bounded sequence of complex numbers.

(a) Prove that ||A|| = sup |\,

(b) Give minimal conditions on the numbers A, that ensure that A is, respectively:
(i) self-adjoint,
(ii) non-negative,
(iii) positive,
(iv) coercive.
Motivate your claims.

Solution:

(a) Set M = sup,, |\n|. Then
| Az||* = Z\An$n|2<ZM2\fU [ = M|,

Conversely, let e, denote the n’th canonlcal unit vector. Then
|A[l = Su101||z490|| > || Aen|| = [An]-

llll=

Take the supremum to get ||A|| > sup,, |\n| = M
(b) We find

(Ax,y) Z)\nxnyn—zzn nYn = (v, A%y),

where - B B
A*(l‘l, T2, T3y - ) = ()\1:E1, )\25[32, )\31‘3, N ),

It follows that A is self-adjoint iff every A; is purely real.

oo
Next suppose that A is S-A, then (Az,x) = Z |z |2

n=1
It follows immediately that A is non-negative iff A\, > 0 for every n, and that A is positive iff
An > 0 for every n.

Set ¢ = inf A,. If ¢ <0, then inf (Az,z) < inf(Ae,,e,) = inf |\,| < 0, so in this case, A is not

llz||=1

coercive. Conversely, if ¢ > 0, then (Az,x) = Z Anlzn|? > CZ lzn|? = ¢||z||? so A is coercive.



Problem 2: Let T denote the unit circle parameterized using the interval I = [—m, 7] as usual,
and define the function f € L*(T) via

1 when |z| < 7/2,
fz) =

0 when |z| > 7/2.
(a) Compute the Fourier series of f.
(b) Determine for which s € R it is the case that f belongs to the Sobolev space H*(T).
(c) Now define a function g € L?(T?) via

g(z1,22) = f(21) f(22).
For which s € R can you say for sure that g ¢ H*(T?)?

Solution:

a e know that f = €n, | )en, Where e,(x) = (27)~ exp(inz). For n we in
We k hat f f h o)~ 1/2 F 0 we find

n=—oo

e g cos(nx) dx

\/ﬂ /w/z

(sin(nm/2) — sin(—nn/2)) =

=gz [ s [

/2

il -

2 sin(nm/2).

v

For n = 0 we find

(eo, f) /2.

_ 1/ o
V2 Jz/2

To summarize,

F(a) =v/m 2e0lw) + Dten@) = 5 Y (nla) +enle)

n=1,5,9,... n=3,7,11,... nym
1 2 2
=+ Z — cos(nx) — Z — cos(nx).
2 n=159,.. """ n=3711,.. "
(Fully simplifying the formula was not required for full points.)
(b) For s > 0, we find that || f||%. = Z( + 2% (en, f Z 2s —-
neL neN n

The sum is finite iff 25 — 2 < —1, which is to say, if s < 1/2.

(c) Observe that f ¢ C°(T?). Then the Sobolev embedding theorem tells us that f ¢ H*(T?) if
s> 1. (Since if f € H® for s > d/2 =1, then f would be continuous.)

For a more precise solution, you could use that
22 2
1l = Y L+ 1) {en, £,
nez?
and then use that for n = (n1,ng) we have

1
27

/2

exp(inixy) dry / exp(ingxs) dzs.
—7/2

w/2
/ expli(nzs + nows)) f(z) dz = -

2 —7/2

<€n7f> =

Now use your results from part (a) to show [{ey, f)| ~ 1/(1 4 |n1|)(1 4 |n2|) to get a precise result.
(This precise solution was not required for full score.)



Problem 3: Set I = [—1,1] and let 2 denote the set of continuous functions on I, viewed as a
subset of H = L?(I). Define an operator A : Q — L2(I) via
1 1

[Au|(x) = iu(m) + §u(—:c).

(a) Prove that A can be uniquely extended to an operator in B(H).
(b) Is A a projection? If yes, is it an orthogonal projection?

Solution:

(a) We find that Sup | Aul] = Sap [1(1/2)u(z) + (1/2)u(-2)|| < Sup ((/2)ull + (1/2)]ul]) =
ul|l=1 ull=1 ull=1

[|u||. This shows that A is continuous, and since € is dense, we know that there exists a unique

extension.

(b) First we verify that A is a projection on 2. Define a reflection operator R via [Ru(x) = u(—zx).
Observe that R? = I. Then

A2 = ((1/2)I + (1/2)R)* = (1/4)1* + (1/2)R + (1/4)R* = (1/2)I + (1/2)R = A.
Since €2 is dense and A (and A2) are continuous, the relationship A2 = A holds for the extended

operator as well.

Next recall that A is orthogonal iff ||A|| = 0 or ||A|| = 1. We showed in (a) that ||A|| < 1. To
verify that ||A|| > 1, simply observe that if w = 1 (or any even function), then ||Au|| = ||u||. So
yes, A is orthogonal.



Problem 4: Let (e,); be an orthonormal sequence in a Hilbert space H, and let P denote the set
of all finite linear combinations of elements of e,,’s. (Recall that we write this P = Span(en)zo:l.)
Prove that:

P is dense & (en)zo:l is an ON-basis.

Solution: Suppose first that (e,)72; is a basis. Given any f € H, define its partial expansion in
(en) as usual:

N
(1) In=> e flen

n=1
Since (ey,) is a basis, we know that fy — f in norm. Since fy € P, this proves that any function
can be approximated arbitrarily well be functions in P.

Suppose next that P is dense. Fix an f € H, and define its partial expansion fy asin (1). We need
to prove that fy — f. Fix any € > 0. Since P is dense, there is a g € P such that ||f — g|| < e.
Let N be a number such that g € Span(ey, e, ..., exy) =: Pn. Now suppose that that M > N.
Then since g € Py, and fas is the best possible approximant within Pjs, we find

Lf = full < NI —gll <e.
This shows that fy — f.



