APPM5450 — **Applied Analysis: Section exam 1** — **Solutions** 8:30 – 9:50, February 10, 2014. Closed books.

Problem 1: Consider the Hilbert space $H = \ell^2(\mathbb{N})$, and the operator

$$A(x_1, x_2, x_3, \dots) = (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \dots),$$

where $(\lambda_n)_{n=1}^{\infty}$ is a bounded sequence of complex numbers.

- (a) Prove that $||A|| = \sup_{n} |\lambda_n|$.
- (b) Give minimal conditions on the numbers λ_n that ensure that A is, respectively:
 - (i) self-adjoint,
 - (ii) non-negative,
 - (iii) positive,
 - (iv) coercive.

Motivate your claims.

Solution:

(a) Set $M = \sup_n |\lambda_n|$. Then

$$||Ax||^2 = \sum_{n=1}^{\infty} |\lambda_n x_n|^2 \le \sum_{n=1}^{\infty} M^2 |x_n|^2 = M^2 ||x||^2.$$

Conversely, let e_n denote the n'th canonical unit vector. Then

$$||A|| = \sup_{||x||=1} ||Ax|| \ge ||Ae_n|| = |\lambda_n|.$$

Take the supremum to get $||A|| \ge \sup_n |\lambda_n| = M$.

(b) We find

$$\langle Ax, y \rangle = \sum_{n} \overline{\lambda_n x_n} \, y_n = \sum_{n} \overline{x_n} \, \overline{\lambda_n} y_n = \langle x, A^* y \rangle,$$

where

$$A^*(x_1, x_2, x_3, \dots) = (\bar{\lambda}_1 x_1, \bar{\lambda}_2 x_2, \bar{\lambda}_3 x_3, \dots),$$

It follows that A is self-adjoint iff every λ_i is purely real.

Next suppose that A is S-A, then $\langle Ax, x \rangle = \sum_{n=1}^{\infty} |x_n|^2$.

It follows immediately that A is non-negative iff $\lambda_n \geq 0$ for every n, and that A is positive iff $\lambda_n > 0$ for every n.

Set $c = \inf_n \lambda_n$. If $c \le 0$, then $\inf_{||x||=1} \langle Ax, x \rangle \le \inf_n \langle Ae_n, e_n \rangle = \inf_n |\lambda_n| \le 0$, so in this case, A is not coercive. Conversely, if c > 0, then $\langle Ax, x \rangle = \sum_n |\lambda_n| |x_n|^2 \ge c \sum_n |x_n|^2 = c||x||^2$ so A is coercive.

Problem 2: Let \mathbb{T} denote the unit circle parameterized using the interval $I = [-\pi, \pi]$ as usual, and define the function $f \in L^2(\mathbb{T})$ via

$$f(x) = \begin{cases} 1 & \text{when } |x| \le \pi/2, \\ 0 & \text{when } |x| > \pi/2. \end{cases}$$

- (a) Compute the Fourier series of f.
- (b) Determine for which $s \in \mathbb{R}$ it is the case that f belongs to the Sobolev space $H^s(\mathbb{T})$.
- (c) Now define a function $g \in L^2(\mathbb{T}^2)$ via

$$g(x_1, x_2) = f(x_1)f(x_2).$$

For which $s \in \mathbb{R}$ can you say for sure that $g \notin H^s(\mathbb{T}^2)$?

Solution:

(a) We know that $f = \sum_{n=-\infty}^{\infty} \langle e_n, f \rangle e_n$, where $e_n(x) = (2\pi)^{-1/2} \exp(inx)$. For $n \neq 0$ we find

$$\langle e_n, f \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-inx} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{\pi/2} e^{-inx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{\pi/2} \cos(nx) dx$$
$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{n} \sin(nx) \right]_{-\pi/2}^{\pi/2} = \frac{1}{n\sqrt{2\pi}} \left(\sin(n\pi/2) - \sin(-n\pi/2) \right) = \frac{\sqrt{2}}{n\sqrt{\pi}} \sin(n\pi/2).$$

For n = 0 we find

$$\langle e_0, f \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{\pi/2} dx = \sqrt{\pi/2}.$$

To summarize,

$$f(x) = \sqrt{\pi/2}e_0(x) + \sum_{n=1,5,9,\dots} \frac{\sqrt{2}}{n\sqrt{\pi}} (e_n(x) + e_{-n}(x)) - \sum_{n=3,7,11,\dots} \frac{\sqrt{2}}{n\sqrt{\pi}} (e_n(x) + e_{-n}(x))$$

$$= \frac{1}{2} + \sum_{n=1,5,9} \frac{2}{n\pi} \cos(nx) - \sum_{n=3,7,11} \frac{2}{n\pi} \cos(nx).$$

(Fully simplifying the formula was not required for full points.)

(b) For
$$s \ge 0$$
, we find that $||f||_{H^s}^2 = \sum_{n \in \mathbb{Z}} (1 + |n|^2)^s |\langle e_n, f \rangle|^2 \sim \sum_{n \in \mathbb{N}} n^{2s} \frac{1}{n^2}$.

The sum is finite iff 2s - 2 < -1, which is to say, if s < 1/2.

(c) Observe that $f \notin C^0(\mathbb{T}^2)$. Then the Sobolev embedding theorem tells us that $f \notin H^s(\mathbb{T}^2)$ if s > 1. (Since if $f \in H^s$ for s > d/2 = 1, then f would be continuous.)

For a more precise solution, you could use that

$$||f||_{H^s(\mathbb{T}^2)} = \sum_{n \in \mathbb{Z}^2} (1 + |n|^2)^2 |\langle e_n, f \rangle|^2,$$

and then use that for $n = (n_1, n_2)$ we have

$$\langle e_n, f \rangle = \frac{1}{2\pi} \int_{\mathbb{T}^2} \exp(i(n_1 x_1 + n_2 x_2)) f(x) dx = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \exp(in_1 x_1) dx_1 \int_{-\pi/2}^{\pi/2} \exp(in_2 x_2) dx_2.$$

Now use your results from part (a) to show $|\langle e_n, f \rangle| \sim 1/(1+|n_1|)(1+|n_2|)$ to get a precise result. (This precise solution was not required for full score.)

Problem 3: Set I = [-1, 1] and let Ω denote the set of continuous functions on I, viewed as a subset of $H = L^2(I)$. Define an operator $A: \Omega \to L^2(I)$ via

$$[Au](x) = \frac{1}{2}u(x) + \frac{1}{2}u(-x).$$

- (a) Prove that A can be uniquely extended to an operator in $\mathcal{B}(H)$.
- (b) Is A a projection? If yes, is it an orthogonal projection?

Solution:

- (a) We find that $\sup_{||u||=1} ||Au|| = \sup_{||u||=1} ||(1/2)u(x) + (1/2)u(-x)|| \le \sup_{||u||=1} ((1/2)||u|| + (1/2)||u||) = ||u||$. This shows that A is continuous, and since Ω is dense, we know that there exists a unique extension.
- (b) First we verify that A is a projection on Ω . Define a reflection operator R via [Ru](x) = u(-x). Observe that $R^2 = I$. Then

$$A^{2} = ((1/2)I + (1/2)R)^{2} = (1/4)I^{2} + (1/2)R + (1/4)R^{2} = (1/2)I + (1/2)R = A.$$

Since Ω is dense and A (and A^2) are continuous, the relationship $A^2 = A$ holds for the extended operator as well.

Next recall that A is orthogonal iff ||A|| = 0 or ||A|| = 1. We showed in (a) that $||A|| \le 1$. To verify that $||A|| \ge 1$, simply observe that if u = 1 (or any even function), then ||Au|| = ||u||. So yes, A is orthogonal.

Problem 4: Let $(e_n)_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H, and let \mathcal{P} denote the set of all *finite* linear combinations of elements of e_n 's. (Recall that we write this $\mathcal{P} = \operatorname{Span}(e_n)_{n=1}^{\infty}$.) Prove that:

$$\mathcal{P}$$
 is dense \Leftrightarrow $(e_n)_{n=1}^{\infty}$ is an ON-basis.

Solution: Suppose first that $(e_n)_{n=1}^{\infty}$ is a basis. Given any $f \in H$, define its partial expansion in (e_n) as usual:

(1)
$$f_N = \sum_{n=1}^{N} \langle e_n, f \rangle e_n$$

Since (e_n) is a basis, we know that $f_N \to f$ in norm. Since $f_N \in \mathcal{P}$, this proves that any function can be approximated arbitrarily well be functions in \mathcal{P} .

Suppose next that \mathcal{P} is dense. Fix an $f \in H$, and define its partial expansion f_N as in (1). We need to prove that $f_N \to f$. Fix any $\varepsilon > 0$. Since \mathcal{P} is dense, there is a $g \in \mathcal{P}$ such that $||f - g|| < \varepsilon$. Let N be a number such that $g \in \operatorname{Span}(e_1, e_2, \ldots, e_N) =: \mathcal{P}_N$. Now suppose that that $M \geq N$. Then since $g \in \mathcal{P}_M$, and f_M is the best possible approximant within \mathcal{P}_M , we find

$$||f - f_M|| \le ||f - g|| < \varepsilon.$$

This shows that $f_N \to f$.