Homework 11

11.12) Prove that if s > n/2, then $H^s(R^n) \subset C_0(R^n)$, and there is a constant C such that $||f||_{\infty} \leq C||f||_{H^s}$ for all $f \in H^s(R^n)$

From the Riemann-Lebesgue lemma we know $\hat{f} \in L^1 \Rightarrow f \in C_0$ and $||f||_{\infty} \le (2\pi)^{n/2} ||\hat{f}||_{r^1}$ (1)

Assume $f \in H^s$ for some s > n/2. Then $||f||_{H^s}^2 = \int |\hat{f}(t)|^2 (1+|t|^2)^s dt < \infty$

Also
$$\|\hat{f}\|_{L^{1}} = \int |\hat{f}(t)| dt = \int |\hat{f}(t)| (1+|t|^{2})^{s/2} \frac{1}{(1+|t|^{2})^{s/2}} dt \le \underbrace{\left(\int |\hat{f}(t)|^{2} (1+|t|^{2})^{s} dt\right)^{1/2}}_{=\|\hat{f}\|_{H^{s}}^{2}} = *$$

where the inequality denoted by "CS" uses Cauchy-Shwarz.

Looking at just the last part
$$\int_{R^n} \frac{1}{\left(1+|t|^2\right)^s} dt = C_n \int_0^\infty \frac{1}{\left(1+r^2\right)^s} r^{n-1} dr$$

Note that C_n is the area of the unit sphere in \mathbb{R}^n .

This integral is finite if n-1-2s<-1, which will hold if s>n/2.

Set
$$M = \left(\int \frac{1}{\left(1+|t|^2\right)^s} dt\right)^{1/2}$$

Continuing from above we now have $\|\hat{f}\|_{L^1} \le * \le \|f\|_{H^s} M < \infty$, so $\hat{f} \in L^1$ (2)

Now the Riemann-Lebesgue lemma implies $f \in C_0$.

Combining (1) and (2) we now obtain $||f||_{\infty} \le \frac{1}{(2\pi)^{n/2}} ||\hat{f}||_{L^1} \le \frac{1}{(2\pi)^{n/2}} M ||f||_{H^s}$

11.19) Give a counterexample to show that the Riemann-Lebesgue lemma does not hold for all functions in L^2 . That is, find a function $f \in L^2(R)$ such that \hat{f} is not continuous.

We can easily do this by "working backwards."

Consider the non-continuous $\hat{f}(t) = X_{[-1,1]}(t) = \begin{cases} 1 & -1 \le t \le 1 \\ 0 & else \end{cases}$. Then

$$f(x) = F^{-1} \Big[\hat{f} \Big](x) = \beta \int_{-\infty}^{\infty} e^{ixt} X_{[-1,1]}(t) dt = \beta \int_{-1}^{1} e^{ixt} dt = \beta \Big[\frac{1}{ix} e^{ixt} \Big]_{-1}^{1} = \beta \Big(\frac{e^{ix} - e^{-ix}}{ix} \Big) = 2\beta \frac{\sin(x)}{x} = \sqrt{\frac{2}{\pi}} \frac{\sin(x)}{x}$$

Then $f \in L^2(R)$ and \hat{f} is not continuous.

11.20) Show that $\delta \in H^s(\mathbb{R}^n)$ if and only if s < -n/2.

$$\delta \in H^{s} \Leftrightarrow \hat{\delta}(t) \left(1 + \left|t\right|^{2}\right)^{s/2} \in L^{2} \stackrel{\hat{\delta} = \beta^{n}}{\Leftrightarrow} \beta^{n} \left(1 + \left|t\right|^{2}\right)^{s/2} \in L^{2} \Leftrightarrow \beta^{n} \int \left(1 + \left|t\right|^{2}\right)^{s} dt < \infty \stackrel{Polar}{\Leftrightarrow} \beta^{n} \alpha^{n} \int_{0}^{\infty} \left(1 + r^{2}\right)^{s} r^{n-1} dr < \infty \Leftrightarrow 2s + n - 1 < -1 \Leftrightarrow s < -n/2$$

Note that the iff denoted by "Polar" switches to polar coordinates and the iff across the line break uses $\int_{0}^{\infty} r^{k} dr < \infty \Leftrightarrow k < -1$.

11.21) Show that the integral equation $u(x) + \int_{-\infty}^{\infty} e^{-(x-y)^2/2} u(y) dy = f(x)$ (1) has a unique solution $u \in L^2(R)$ for every $f \in L^2(R)$, and give an expression for u in terms of f.

Existence

Set $\phi(x) = e^{\frac{-x^2}{2}}$ so that (1) takes the form $u + \phi * u = f$.

Then
$$\hat{f}(t) = \hat{u}(t) + \beta^{-n} \hat{\phi}(t) \hat{u}(t) = (1 + \beta^{-n} \hat{\phi}(t)) \hat{u}(t) \Rightarrow \hat{u}(t) \frac{1}{1 + \beta^{-n} \hat{\phi}(t)} \hat{f}(t)$$

We need to verify that $u \in L^2$ when $f \in L^2$. Since F is an isometry we obtain:

$$\|u\|_{L^{2}}^{2} = \|\hat{u}\|_{L^{2}}^{2} = \int \frac{1}{(1+\beta^{-n}\hat{\phi}(t))^{2}} |\hat{f}(t)|^{2} dt = \int \frac{1}{(1+\beta^{-n}\phi(t))^{2}} |\hat{f}(t)|^{2} dt \leq \int |\hat{f}(t)|^{2} dt = \|f\|_{L^{2}}^{2} < \infty$$

Note that the equality denoted by "*" uses $\beta^{-n}\hat{\phi}(t) = \beta^{-n}\phi(t)$ for this specific $\phi(t)$.

So
$$u \in L^2$$
 and $u(x) = \beta^n \int_{\mathbb{R}^n} e^{ix \cdot t} \frac{\hat{f}(t)}{1 + \beta^{-n} \hat{\phi}(t)} dt$.

Uniqueness

Assume u, v both solve the original problem.

Then $u+\phi*u=f$ and $v+\phi*v=f$. Subtraction yields $(u-v)+\phi*(u-v)=0$. Taking the Fourier transform of this yields $(1+\beta^n\hat{\phi}(t))(\hat{u}(t)-\hat{v}(t))=0$, which implies that $\hat{u}(t)=\hat{v}(t)$ almost everywhere.