Homework 3
9.1) Prove thatp(A*): m where m is the set {/7, eClie p(A)}.

Assume A€ p(4). Then (4—AI)" and ((A — A" )* exist and are bounded.
We need to show that ((A ~AI)" )* = (A* —AI )71 :
If we show that (B‘1 )* = (B’*)_1 then this follows immediately.

<(B"' )*x, y> = <x, B_1y> = <x,y'>
<(B*)71x, y> = <(B*)71x, By’> = <B*(B* )71 X, y'> = <x,y'>

So (B‘1 )* = (B*)_1 and we are done.

Say y=By'. Then

9.2) IfAisan eigenvalue of 4 then A is in the spectrum of 4*. What can you say about the type
of spectrum A belongs to?

First we show that A is in the spectrum of 4" Aeo, (4)=3x#0st.(4-Al)x=0Vy
This holds iff (x, (4" —27)y)=0Vy which holds iff x L ran(4’ - 1)= 7 e o(4’)
Now A ¢ o,(4) because (A* —ZI) is dense iff (A* —ZI)L =0,but x#0.

So Ais in either the point or residual spectrum of A*.



9.3) Suppose that A is a bounded linear operator of a Hilbert space and A, i € p(A). Prove
that the resolvent R, of A satisfies R, - R, = (y - A)RAR# .

First note that 4™ =B ' =—-4"" (A - B)B_1 (we use this below in the equality denoted by *)

Then R, — R, = (4~ A1) ~(4 )" = (4= 21) (4= A1)~ (4 )4~ )" = (= 2)R,R,

=R; =(/‘ -4 ) =R;1

9.4)  Prove that the spectrum of an orthogonal projection P is either {O} (in which case P=0),
{1} (in which case P=I), or {0,1}.

L

Assume that P is an orthogonal projection. Then H = ranP @ ker P where ranP = (ker P)
Case 1) ranP = {0}
Then P=0 and Px=0 Vx so Oeap(P)

If 2 #0 then (P—/?J)f1 =%I N ﬂep(P)

Case 2) ker P = {0}
Then ranP = (ker P)" =H so P=1 and Px=x Vx so l € o, (P)

If A#1 then (P—AI)" =ﬁ] so A€ p(P)

Case 3) ranP # {0}, ker P # {0}
If x#0,xeranP then x=Pxso le O'p(P)
If x#0,x e ker P then 0= Pxso Oe o, (P)

If %0, then (P—AI)" :ﬁp-%(}-])) so 1€ p(P)



9.5) A is abounded, nonnegative operator on a complex Hilbert space. Prove that
G(A) c [O, oo) .

First note that A nonnegative implies A self-adjoint and A self-adjoint implies O'(A) € R. Also,
A bounded implies o(4)c [— ||A A||]
Assume A <0. We need to show that (4 — A7) is invertible.
Since A is self-adjoint we know that (4u,u)=(u, Au)e R so:
(4= 20l =] 4u]~ 22(Au,u)+ Alul = 22 so (4— A) is coercive. A coercive implies
— —

>0 <0 >0

>0

ran(A— Al ) closed = L ¢ ,(A)
(A= AI)one—to—one=> A ¢ O'p(A

M

) A self-adjoint implies &, (4) = {empty}.

Since A is not in any of the parts of the spectrum it is not in the spectrum and our proof is
complete.



9.6) G is a multiplication operator on I*(R) defined by Gf(x)= g(x)f(x) where g is
continuous and bounded. Prove that G is a bounded linear operator on Z*(R) and that its

spectrum is given by O'(G) = { gix i| xXeR } Can an operator of this form have
eigenvalues?

G is a bounded linear operator:

61 =suplar = s e )< sl (oY )|
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Spectrum: Set Q=ig(x)|x e Ry.
Suppose A ¢ Q. Then J¢>0s.t. |/1 — g(x)| >g Vx.

Note that ( )
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Suppose A €. Then there exists x, € R s.t. g(xn)—> A
For j=1,23... pick n; s.t. ‘g(xnj)— ﬂ‘ S%
Since g is continuous at x, there exists o s.t. x € B; (xnv ):> ‘g(xn_ )— g(x)( Sl_
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The inequality denoted by “TI” uses the triangle inequality.
We have shown that (G -Al ) is not continuously invertible (so A is in the spectrum).

Eigenvalues: Suppose (G - Al )u =0 for u=0.
Then (g(x)— ﬂ)u(x) =0 but u # 0. This is possible if and only if the set {x : g(x) = /1} has
positive (non-zero) measure).



9.7) Let K :I2([0,1]) > 2([0,1]) be the integral operator defined by Kf (x)= on f()dy .
a) Find the adjiont operator K" .

(K7.g)=[ [ 70l g(xdx = [ [ (e (x)dyelx = Hﬂg dxdy—fﬂf x)dxdy =(f,K"g)

So K'g(x)=[ g(v)

b)  Show that |K|=2/7.

Set ¢, (x)= V2 cos( > j Then (g, )::1 is an ON-basis for L*([0,1]).

Then [K4,Jx)=2| cos( jdy{%sm( : HO V2 —sm[ : j

Set ,(x)= V2 sin(?j . Then (y, ):;1 is also an ON-basis for Z([0,1]).

0
We can write x = Z a,d, .

n=l

o .
=2 (JS?Z
\nt).

Then Ko = |3
n=1

4 2
=L o i< 2.
£4/7r
Since ||K¢] ||2 = £||¢1 ||2 we also have that ||K|| > 2 . Together we get ||K|| =2/r.
V2 V2
Remark: We have determined the singular value decomposition of K:

= 2 .
Kx = z oV, <¢n,x> where o, = — are the singular values.
= nrx
2
We can then conclude that ||K || =maxo, =0, =—.



c) Show that the spectral radius of K is equal to zero.

[K2 Ix II (z)dzdy = I Idydz—.[x 2)u(z)dz
[K3 :kx J‘J. y - z)u(z)dzdy = J. J.y Z)dydz—jgu(z)dz

n—1
This generalizes to [K ”ukx) == r (-2) u(z)dz

0 (n—1)

2 2

1 x(X - Z)ni1 1 I rx n—1 2(ex ”u”

So [K"u —J.O(J‘O - 1) u(z)dz} dxCSS(n_l)!J-OOO(x z) dzj Uouz( )dzj dx < (-1)
<! <lu
) 1 1 I/n
K" < (n_l)l, SO r(K)zhmsup(mJ =0

d) Show that 0 belongs to the continuous spectrum of K.
Set Ku=v.

Pick v e P s.t. ||v - \7” < & where P is the set of functions (sin(nzx))”,. We have previously
shown that this is a basis.

Set i =V' then i € I’ (I) and [Kﬁ](x) = IOX V(y)dy = V(x)— \7(0) = V(x)
The final equality uses the fact that sin(O) =0.

So ¥(x)e rankK and ||v - \7” < &, hence 0 is in the continuous spectrum.



9.8)  Define the right shift operator S on /*(Z) by S(x), =x,_, Vk € Z where x =(x, )f:_m is in
I*(Z). Prove the following (a-d).

o0 itn

. . _ e
First recall the Fourier transform: F~'x = E an
V4

Set § = F'SF , then (S — A)= F'SF = AF'F = (S = AI)F
Now Aeo (S)<:>/160'a(§), a=p,cr

ltn 0 lt(n 1)

nl\/——e”an]\/——ex
—00 1

=F"x

Assume || = 1. Given ¥ e I*(T) we have (S—Al)— ! 7 ¥(t)=3(¢) so (S - AI) is bijective.
el —

Then F'Sx = z X SO lekt =e"%(t)

(S - A1) bijective implies 4 < p(S) %)

Assume |/1| =1 and (§ - Al )? =0. Then (e” - Al )?((t) =0 almost everywhere which implies
x=0.

This means that (§ - Al ) is one-to-one, so we can immediately conclude that A ¢ o, (§ ) (**)

Note that 1 ¢ I’an(g - 21):> ran(§ - /U);t (T) (¥**)

~ it
However, givena 7 € I*(T') set 7, (¢)= {y 9 ‘l —¢ ‘2 I/n then ¥, (¢)—2=2— y(¢) and

0 else
Y, € ran(§ —/U) since (5—21 %’”(2 =5, (1) (FH)
et —
a) The point spectrum of S is empty.

The equations (*) and (**) above show that A isn’t in the point spectrum for |ﬂ| #1 and |ﬂ| =1

respectively. Combined they show that the point spectrum is empty.
b) ran(Al —S)=1*(Z) for every 1 e C with |/1| > 1

Equation (*) above shows this.

c) ran(AI - S)=1°(Z) for every A C with |4 <1

Equation (*) above shows this.

d) The spectrum of S consists of the unit circle {/1 eC| |/1| = 1} and is purely continuous.

Equation (*) shows that A4 is not in the spectrum for |/1| # 1. Equations (***) and (****)

combine to show that all 4 with |/1| =1 are in the continuous spectrum.



9.9)  Define the discrete Laplacian operator A on /*(Z) by (Ax), = x,_, —2x, +x,,, , where

X = (xk )f:_w . Show that A =8 +S" — 2/ and prove that the spectrum of A is entirely
continuous and consists of the interval [—4,0].

Noting that on / 2(Z ) the adjoint of the right shift operator is the left shift operator (see problem 3
of homework 3), the fact that A =S +S" — 27 follows directly.

Spectrum: As we did in the previous problem we begin by switching to the Fourier domain.
Then

itn

F'Ax = i(xm1 +Xx

- +2x”)jﬂ =e" > x,, e\/ﬂ +e D x,, e\/ﬁ +2) x, jﬂ = (e” +e” +2E(L)
n=—0 n=—0w n=—0n n=—w PN
S0 [Z)?kt) =(e" + e +2)(r)

Note that e” +e ™ +2 < sup‘e”‘ + sup‘e’” +2<4

Assume |A|> 4. Given ¥ e I’(T) we have (A—AI) o e”l 2 ¥(t)=5(t) so (A—AI) is
bijective.

Note that ¢” + e +2 > —suple”| - Sup‘e_” +2>0

Assume |2 <4. Given § e I2(T") we have (A A1) o 1 o (1) =5() so (A= A1) is

bijective.
So the spectrum consists of the interval [-4,0]. We just need to show that it is continuous.

Continuous: Note that 1 ¢ ran(z - A ):> ran(z - A );t *(T)
¥(2) ‘ﬂ, - (e” +e " + 21 >1/n

then y, (t)m—%> y(t)
0 else

However, givena ¥ € I*(T) set 7, ()= {

and y eran(Z—ﬂ) since (Z_ﬂ)( - ;ﬁ(i)z) , ~5.(0)
e +e _

9.10) Posted separately on the website.



9.11) The approximate spectrum is defined o, (A) {/1 3 st ||x || land || A- /11 || —>O}.
Prove the following: (a) O upp (4)c o(4)

b o,(4)co,,(4)

©  ofd)co,,(4)
(d) Give an example to show that a point in the residual spectrum need not belong to the
approximate spectrum.

a) Prove o, (4)c o(4)
Assume 1€ o(A) = p(A). Then (4—AI)" is a bounded operator. If (x,) is any sequence of
vectors with ||xn|| =1 thenset y, = (4—Al)x,

Then 1= v, |=[(4=21)"y, | <[(4=20)"[ -] -
Also |y, | =[(4-a1)x, Zm so Ago, (4).
b) Prove o, (4)c O urp (4)

Assume 1 eo, (4). Then there exists an x#0 s.t. Ax=Ax. Set x, =, then ||(A - ﬂl)xn” =0

so Aeo,, (4).

)

Assume A e JC(A) Then ran(4A—-Al)=H . Set « —ﬂf || A Z,I x|| We want to prove that

a =0 (if it is then we can pick x, s.t. ||xn||: land || A- ﬂl) ;
If a # 0 then by Proposition 5.30 ran(A4—AI) is closed. This is impossible since (4 —Al) is not
onto but ran(4—-Al)=H .

C) Prove o, (A)c o

d) Give an example of an operator A and a point A € o, (A) st. A¢o,, (A) .
Consider the right-shift operator S from question 9.10 and the point A =0. Then if ||xn||: 1 we
have [(S = 27)x, | =[x, =[x, | =1.



