
APPM5450 — Applied Analysis: Final exam — Solutions
7:30pm – 10:00pm, May 7, 2014. Closed books.

Be smart in how you use your time. Some problems can potentially be finished very quickly — do
these first. For instance, problems 1b,c,d and 2 should be fast. Problems 3 and 4 can in principle
be solved quickly. Please motivate your answers unless the problem explicitly states otherwise.

Problem 1: (20p) The following problems are worth 4 points each. No motivation required.

(a) Which of the following operators are compact:

(i) H = L3(I) with I = [0, 1], and [Au](x) =
∫ 1
0 cos(x− y)u(y) dy.

(ii) H = L2(R) and [Au](x) = (1/2)u(x− 1).

(iii) H = L2(Z) = ℓ2(Z) and [Au](n) = e−n2
u(n).

(iv) H = L2(R) and [Au](x) = e−x2
u(x).

(b) State the Lebesgue dominated convergence theorem.

(c) State the Fatou lemma.

(d) Set fn(x) = n1/3 χ(0,1/n). Evaluate ||fn||p for p ∈ [1,∞) and specify what this information
tells you about whether (fn)

∞
n=1 converges (weakly or strongly) in Lp(R).

(e) Which of the following statements are necessarily correct for linear bounded operators on a
Hilbert space H:

(i) If A is self-adjoint, then B = exp(iA) is unitary.

(ii) If A and B are self-adjoint, then C = AB is also self-adjoint.

(iii) If A is self-adjoint, then A2 is non-negative.

(iv) If A is skew-adjoint, then B = (I −A) (I +A)−1 is unitary.

Solution:

(a) (i) and (iii) are compact.1

(d) ||fn||p = n1/3−1/p.

For p > 3, ||fn||p → ∞, so (fn)
∞
n=1 cannot converge either weakly or strongly.

For p = 3, we have ||fn||3 = 1. This is not enough information to adjudicate convergence.

For p < 3, ||fn||p → 0, so fn → 0 both weakly and strongly.

(e) (i), (iii), (iv) are correct.2

Grading guide: -2p for each incorrect true/false answer.

1(i) A is compact since ran(A) has dimension 2. (ii) A is not compact. Set for instance fn = χ(n,n+1). Then fn ⇀ 0,

but (Afn) does not converge in norm. (iii) A is compact. For any ε, set M =
√

log(1/ε) and AM = χ[−M,M ] A. Then
||A−AM || ≤ ε and AM is finite dimensional. (iv) σc(A) = [0, 1]. Recall that for a self-adjoint compact operator, the
only possible point in the continuum spectrum is 0.

2For (ii), note that in general, operators do not commute. E.g., check A =

[
1 1
1 1

]
and B =

[
1 0
0 0

]
.



Problem 2: (20p) Recall that the Riemann-Lebesgue lemma states that if a function f is in L1(Rd),

then its Fourier transform f̂ belongs to C0(Rd). Please demonstrate how you can use this result to
prove that if f ∈ Hs(Rd) for s “sufficiently high”, then f ∈ C0(Rd). Make sure to specify clearly
what “sufficiently high” means.

Solution: Suppose that f ∈ Hs(Rd).

Observe that by the R-L Lemma, it is sufficient to prove that f̂ ∈ L1 to establish that f ∈ C0 (since

F−1 = RF , the R-L lemma applies to F−1 too). To prove that f̂ ∈ L1, we find∫
Rd

|f̂(t)| =
∫
Rd

(1 + |t|2)−s/2 (1 + |t|2)s/2 |f̂(t)| ≤ {Cauchy-Schwartz} ≤

≤
(∫

Rd

(1 + |t|2)−s

)1/2(∫
Rd

(1 + |t|2)s |f̂(t)|2
)1/2

=

(∫
Rd

(1 + |t|2)−s

)1/2

||f ||Hs

By switching to polar coordinates, we can verify when the right hand side is finite∫
Rd

(1 + |t|2)−sdt = Sd

∫ ∞

0
(1 + r2)−s rd−1 dr,

where Sd is the area of the unit sphere in Rd. It is clear that this integral is finite iff −2s+d−1 < −1,

which is to say: If s > d/2, then f̂ ∈ L1, and therefore f ∈ C0.



Problem 3: (20p) Specify σp(A), σc(A), σr(A) for the following operators:

(a) H = L2(R) and [Au](x) = u(x) + u(−x).

(b) H = L2(Z) and [Au](n) = e−n2
u(n).

(c) H = L2(R) and [Au](x) = [Fu](x) (Fourier transform).

(d) H = L2(R) and [Au](x) = u(x− 1).

Solution: Only the non-empty parts of the spectra are given.

(a) σp(A) = {0, 2}.

(Observe that A = 2P , where P is the projection onto the even functions. )

(b) σp(A) = {e−n2}∞n=1, σc(A) = {0}.

(Observe that for each n, e−n2
is an eigenvalue associated with the canonical basis vector en. Then

since the spectrum has to be closed, the cluster point 0 of σp(A) must also be included. This point
must be in the continuum spectrum since A is self-adjoint, and therefore σr(A) = ∅.)

(c) σp(A) = {1, −1, i, −i}.

(F is unitary, which immediately tells you that the spectrum is contained in the unit circle. Then
from the relation F4 = I, you find that any λ ∈ σ(A) must satisfy λ4 = 1. Verifying that each is
the possible solutions actually is an eigenvalue is a little trickier.)

(d) σc(A) = {λ ∈ C : |λ| = 1}.

(A is unitary, which immediately tells you that the spectrum is contained in the unit circle. To

verify the precise statement, move to Fourier space, and observe that, with Â = FAF∗, we have

[Â û](t) = e−it û(t), in other words, Â is a diagonal operator and so σ(A) = σ(Â) = {e−it : t ∈ R}.)



Problem 4: (20p) Let S(R) denote the set of Schwartz functions as usual, and define for n =
1, 2, 3, . . . a linear function Tn on S(R) via

⟨Tn, φ⟩ =
∫ −1/n

−∞

1

x
φ(x) dx+

∫ ∞

1/n

1

x
φ(x) dx.

(a) (5p) Prove that each Tn is a continuous map Tn : S(R) → C. What is the order of Tn?
(Recall that the order of a distribution U is the lowest number m for which a bound of the
form |U(φ)| ≤ C

∑
|α|≤m

∑
ℓ≤k ||φ||α,ℓ holds. It measures how many derivatives in φ you

need to bound U .)

(b) (10p) Prove that there exists a continuous functional T such that Tn → T in S∗(R).

(c) (5p) Specify the Fourier transform T̂ of T . No motivation required.
Hint: You may want to try to determine the product xT .

Solution:

(a) Each Tn is a bounded linear functional of order 0:

|Tn(φ)| ≤
∫ 1

1/n

1

x
(|φ(x)|+ |φ(−x)|) dx+

∫ ∞

1

1

x
(|φ(x)|+ |φ(−x)|) dx

≤
∫ 1

1/n

1

x
2||φ||0,0 dx+

∫ ∞

1

1

x

1

(1 + x2)1/2
2||φ||0,1 dx ≤ 2 log(n) ||φ||0,0 + 2||φ||0,1.

(b) For each n, we have

Tn(φ) =

∫ ∞

1/n

φ(x)− φ(x)

x
dx.

Observe that for 0 < x ≤ 1, we have, for any φ ∈ S,

(1)

∣∣∣∣φ(x)− φ(−x)

x

∣∣∣∣ = ∣∣∣∣1x
∫ x

−x
φ′(t) dt

∣∣∣∣ ≤ 2 ||φ||1,0.

For 1 ≤ x, we find

(2)

∣∣∣∣φ(x)− φ(−x)

x

∣∣∣∣ ≤ |φ(x)|+ |φ(−x)|
x

≤ 2||φ||0,1
(1 + x2)1/2x

≤ 2||φ||0,1
x2

.

Define a functional T via

T (φ) =

∫ ∞

0

φ(x)− φ(−x)

x
dx.

It follows from (1) and (2) that T is well-defined, and that |T (φ)| ≤ 2||φ||0,1 + 2||φ||1,0, so T ∈ S∗.
Finally, observe that for any fixed φ,

|T (φ)− Tn(φ)| =

∣∣∣∣∣
∫ 1/n

0

φ(x)− φ(−x)

x
dx

∣∣∣∣∣ ≤
∫ 1/n

0
2||φ||1,0 dx =

1

n
2||φ||1,0 → 0, as n → ∞.

(c) T̂ (x) = −i
√

π
2 sign(x).

For a detailed solution, see the posted solution to problem 11.22 in the textbook.

To get a clue to what the answer might be, note xT = 1, and so −ixT = −i. Then ∂tT̂ = −i
√
2πδ.

Integrating, we see that T̂ should be a step function with a jump of size −i
√
2π at the origin.

Grading guide: In (a), you lose 2 points if you bound the order by 1 instead of 0.



Problem 5: (20p) Consider for p ∈ [1,∞) the Banach space Lp(R). Define a functional φ on the
subspace Cc(R) via

φ(f) =

∫ ∞

1

1√
x
f(x) dx.

Recall that Cc(R), the set of compactly supported continuous functions, is dense in Lp(R).

For which p ∈ [1,∞), if any, can φ be extended to a continuous linear functional on all of Lp(R)?

For any p for which you claim that φ ∈ (Lp)∗, give an upper bound for ||φ||(Lp)∗ .

Solution: Set g(x) = x−1/2 χ[1,∞). Then ||g||qq =
∫ ∞

1
x−q/2. We find that g ∈ Lq iff q > 2.

In this problem, view q as a function of p, q = p/(p− 1) so that 1/p+ 1/q = 1.

Case 1 — p ∈ [1, 2): In this case φ ∈ (Lp(R))∗ since by the Hölder inequality |φ(f)| ≤ ||g||q||f ||p,
and ||g||q is finite. Moreover, ||φ||(Lp)∗ ≤ ||g||Lq = (2/(q − 2))1/q = ((2p− 2)/(2− p))1−1/p.

Case 2 — p = 2: Pick α such that α > 1/2 and set fα(x) = x−α χ[1,∞). Then fα ∈ L2, and

||fα||22 =
∫∞
1 x−2α dx = (2α− 1)−1. Moreover, φ(fα) =

∫∞
1 x−1/2−α dx = 2(2α− 1)−1. Now

||φ|| = sup
f ̸=0

|φ(f)|
||f ||2

≥ sup
α>1/2

|φ(fα)|
||fα||2

= sup
α>1/2

2(2α− 1)−1

(2α− 1)−1/2
= sup

α>1/2
2(2α− 1)−1/2 = ∞.

We see that φ cannot be in the dual of L2.

Case 3 — p > 2: Pick α such that 1/p < α < 1/2 and set f(x) = x−α χ[1,∞). Then f ∈ Lp, but
φ(f) = ∞, so φ cannot be a continuous linear functional on Lp.

Grading guide: Points are allocated as follows:
12p for a perfect answer to the case p ∈ [1, 2).
3p for a perfect answer to the case p = 2.
5p for a perfect answer to the case p ∈ (2,∞).

Note that Hölder’s inequality immediately provides an upper bound for ||φ||(Lp)∗ . finding a maxi-
mizer, or a maximizing sequence, in the expression ||φ||(Lp)∗ = sup||f ||p=1 |φ(f)| is a harder. This
was not required to receive full points.


