APPM5450 - Applied Analysis: Final exam - Solutions

7:30pm - 10:00pm, May 7, 2014. Closed books.
Be smart in how you use your time. Some problems can potentially be finished very quickly - do these first. For instance, problems $1 b, c, d$ and 2 should be fast. Problems 3 and 4 can in principle be solved quickly. Please motivate your answers unless the problem explicitly states otherwise.

Problem 1: (20p) The following problems are worth 4 points each. No motivation required.
(a) Which of the following operators are compact:
(i) $H=L^{3}(I)$ with $I=[0,1]$, and $[A u](x)=\int_{0}^{1} \cos (x-y) u(y) d y$.
(ii) $H=L^{2}(\mathbb{R})$ and $[A u](x)=(1 / 2) u(x-1)$.
(iii) $H=L^{2}(\mathbb{Z})=\ell^{2}(\mathbb{Z})$ and $[A u](n)=e^{-n^{2}} u(n)$.
(iv) $H=L^{2}(\mathbb{R})$ and $[A u](x)=e^{-x^{2}} u(x)$.
(b) State the Lebesgue dominated convergence theorem.
(c) State the Fatou lemma.
(d) Set $f_{n}(x)=n^{1 / 3} \chi_{(0,1 / n)}$. Evaluate $\left\|f_{n}\right\|_{p}$ for $p \in[1, \infty)$ and specify what this information tells you about whether $\left(f_{n}\right)_{n=1}^{\infty}$ converges (weakly or strongly) in $L^{p}(\mathbb{R})$.
(e) Which of the following statements are necessarily correct for linear bounded operators on a Hilbert space H :
(i) If A is self-adjoint, then $B=\exp (i A)$ is unitary.
(ii) If A and B are self-adjoint, then $C=A B$ is also self-adjoint.
(iii) If A is self-adjoint, then A^{2} is non-negative.
(iv) If A is skew-adjoint, then $B=(I-A)(I+A)^{-1}$ is unitary.

Solution:

(a) (i) and (iii) are compact. ${ }^{1}$
(d) $\left\|f_{n}\right\|_{p}=n^{1 / 3-1 / p}$.

For $p>3,\left\|f_{n}\right\|_{p} \rightarrow \infty$, so $\left(f_{n}\right)_{n=1}^{\infty}$ cannot converge either weakly or strongly.
For $p=3$, we have $\left\|f_{n}\right\|_{3}=1$. This is not enough information to adjudicate convergence.
For $p<3,\left\|f_{n}\right\|_{p} \rightarrow 0$, so $f_{n} \rightarrow 0$ both weakly and strongly.
(e) (i), (iii), (iv) are correct. ${ }^{2}$

Grading guide: -2 p for each incorrect true/false answer.

[^0]Problem 2: (20p) Recall that the Riemann-Lebesgue lemma states that if a function f is in $L^{1}\left(\mathbb{R}^{d}\right)$, then its Fourier transform \hat{f} belongs to $C_{0}\left(\mathbb{R}^{d}\right)$. Please demonstrate how you can use this result to prove that if $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for s "sufficiently high", then $f \in C_{0}\left(\mathbb{R}^{d}\right)$. Make sure to specify clearly what "sufficiently high" means.
Solution: Suppose that $f \in H^{s}\left(\mathbb{R}^{d}\right)$.
Observe that by the R-L Lemma, it is sufficient to prove that $\hat{f} \in L^{1}$ to establish that $f \in C_{0}$ (since $\mathcal{F}^{-1}=R \mathcal{F}$, the R-L lemma applies to \mathcal{F}^{-1} too). To prove that $\hat{f} \in L^{1}$, we find

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\hat{f}(t)|= & \int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{-s / 2}\left(1+|t|^{2}\right)^{s / 2}|\hat{f}(t)| \leq\{\text { Cauchy-Schwartz }\} \leq \\
& \leq\left(\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{-s}\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{s}|\hat{f}(t)|^{2}\right)^{1 / 2}=\left(\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{-s}\right)^{1 / 2}\|f\|_{H^{s}}
\end{aligned}
$$

By switching to polar coordinates, we can verify when the right hand side is finite

$$
\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{-s} d t=S_{d} \int_{0}^{\infty}\left(1+r^{2}\right)^{-s} r^{d-1} d r,
$$

where S_{d} is the area of the unit sphere in \mathbb{R}^{d}. It is clear that this integral is finite iff $-2 s+d-1<-1$, which is to say: If $s>d / 2$, then $\hat{f} \in L^{1}$, and therefore $f \in C_{0}$.

Problem 3: (20p) Specify $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A), \sigma_{\mathrm{r}}(A)$ for the following operators:
(a) $H=L^{2}(\mathbb{R})$ and $[A u](x)=u(x)+u(-x)$.
(b) $H=L^{2}(\mathbb{Z})$ and $[A u](n)=e^{-n^{2}} u(n)$.
(c) $H=L^{2}(\mathbb{R})$ and $[A u](x)=[\mathcal{F} u](x)$ (Fourier transform).
(d) $H=L^{2}(\mathbb{R})$ and $[A u](x)=u(x-1)$.

Solution: Only the non-empty parts of the spectra are given.
(a) $\sigma_{\mathrm{p}}(A)=\{0,2\}$.
(Observe that $A=2 P$, where P is the projection onto the even functions.)
(b) $\sigma_{\mathrm{p}}(A)=\left\{e^{-n^{2}}\right\}_{n=1}^{\infty}, \sigma_{\mathrm{c}}(A)=\{0\}$.
(Observe that for each $n, e^{-n^{2}}$ is an eigenvalue associated with the canonical basis vector e_{n}. Then since the spectrum has to be closed, the cluster point 0 of $\sigma_{\mathrm{p}}(A)$ must also be included. This point must be in the continuum spectrum since A is self-adjoint, and therefore $\sigma_{\mathrm{r}}(A)=\emptyset$.)
(c) $\sigma_{\mathrm{p}}(A)=\{1,-1, i,-i\}$.
(\mathcal{F} is unitary, which immediately tells you that the spectrum is contained in the unit circle. Then from the relation $\mathcal{F}^{4}=I$, you find that any $\lambda \in \sigma(A)$ must satisfy $\lambda^{4}=1$. Verifying that each is the possible solutions actually is an eigenvalue is a little trickier.)
(d) $\sigma_{\mathrm{c}}(A)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
(A is unitary, which immediately tells you that the spectrum is contained in the unit circle. To verify the precise statement, move to Fourier space, and observe that, with $\hat{A}=\mathcal{F} A \mathcal{F}^{*}$, we have $[\hat{A} \hat{u}](t)=e^{-i t} \hat{u}(t)$, in other words, \hat{A} is a diagonal operator and so $\sigma(A)=\sigma(\hat{A})=\overline{\left\{e^{-i t}: t \in \mathbb{R}\right\}}$.)

Problem 4: (20p) Let $\mathcal{S}(\mathbb{R})$ denote the set of Schwartz functions as usual, and define for $n=$ $1,2,3, \ldots$ a linear function T_{n} on $\mathcal{S}(\mathbb{R})$ via

$$
\left\langle T_{n}, \varphi\right\rangle=\int_{-\infty}^{-1 / n} \frac{1}{x} \varphi(x) d x+\int_{1 / n}^{\infty} \frac{1}{x} \varphi(x) d x .
$$

(a) (5p) Prove that each T_{n} is a continuous map $T_{n}: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$. What is the order of T_{n} ? (Recall that the order of a distribution U is the lowest number m for which a bound of the form $|U(\varphi)| \leq C \sum_{|\alpha| \leq m} \sum_{\ell \leq k}\|\varphi\|_{\alpha, \ell}$ holds. It measures how many derivatives in φ you need to bound U.)
(b) (10p) Prove that there exists a continuous functional T such that $T_{n} \rightarrow T$ in $\mathcal{S}^{*}(\mathbb{R})$.
(c) (5p) Specify the Fourier transform \hat{T} of T. No motivation required.

Hint: You may want to try to determine the product $x T$.

Solution:

(a) Each T_{n} is a bounded linear functional of order 0 :

$$
\begin{aligned}
\left|T_{n}(\varphi)\right| \leq \int_{1 / n}^{1} & \frac{1}{x}(|\varphi(x)|+|\varphi(-x)|) d x+\int_{1}^{\infty} \frac{1}{x}(|\varphi(x)|+|\varphi(-x)|) d x \\
& \leq \int_{1 / n}^{1} \frac{1}{x} 2\|\varphi\|_{0,0} d x+\int_{1}^{\infty} \frac{1}{x} \frac{1}{\left(1+x^{2}\right)^{1 / 2}} 2\|\varphi\|_{0,1} d x \leq 2 \log (n)\|\varphi\|_{0,0}+2\|\varphi\|_{0,1} .
\end{aligned}
$$

(b) For each n, we have

$$
T_{n}(\varphi)=\int_{1 / n}^{\infty} \frac{\varphi(x)-\varphi(x)}{x} d x
$$

Observe that for $0<x \leq 1$, we have, for any $\varphi \in \mathcal{S}$,

$$
\begin{equation*}
\left|\frac{\varphi(x)-\varphi(-x)}{x}\right|=\left|\frac{1}{x} \int_{-x}^{x} \varphi^{\prime}(t) d t\right| \leq 2\|\varphi\|_{1,0} . \tag{1}
\end{equation*}
$$

For $1 \leq x$, we find

$$
\begin{equation*}
\left|\frac{\varphi(x)-\varphi(-x)}{x}\right| \leq \frac{|\varphi(x)|+|\varphi(-x)|}{x} \leq \frac{2\|\varphi\|_{0,1}}{\left(1+x^{2}\right)^{1 / 2} x} \leq \frac{2\|\varphi\|_{0,1}}{x^{2}} . \tag{2}
\end{equation*}
$$

Define a functional T via

$$
T(\varphi)=\int_{0}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x .
$$

It follows from (1) and (2) that T is well-defined, and that $|T(\varphi)| \leq 2\|\varphi\|_{0,1}+2\|\varphi\|_{1,0}$, so $T \in \mathcal{S}^{*}$. Finally, observe that for any fixed φ,

$$
\left|T(\varphi)-T_{n}(\varphi)\right|=\left|\int_{0}^{1 / n} \frac{\varphi(x)-\varphi(-x)}{x} d x\right| \leq \int_{0}^{1 / n} 2\|\varphi\|_{1,0} d x=\frac{1}{n} 2\|\varphi\|_{1,0} \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

(c) $\hat{T}(x)=-i \sqrt{\frac{\pi}{2}} \operatorname{sign}(x)$.

For a detailed solution, see the posted solution to problem 11.22 in the textbook.
To get a clue to what the answer might be, note $x T=1$, and so $-i x T=-i$. Then $\partial_{t} \hat{T}=-i \sqrt{2 \pi} \delta$. Integrating, we see that \hat{T} should be a step function with a jump of size $-i \sqrt{2 \pi}$ at the origin.

Grading guide: In (a), you lose 2 points if you bound the order by 1 instead of 0 .

Problem 5: (20p) Consider for $p \in[1, \infty)$ the Banach space $L^{p}(\mathbb{R})$. Define a functional φ on the subspace $C_{\mathrm{c}}(\mathbb{R})$ via

$$
\varphi(f)=\int_{1}^{\infty} \frac{1}{\sqrt{x}} f(x) d x
$$

Recall that $C_{\mathrm{c}}(\mathbb{R})$, the set of compactly supported continuous functions, is dense in $L^{p}(\mathbb{R})$.
For which $p \in[1, \infty)$, if any, can φ be extended to a continuous linear functional on all of $L^{p}(\mathbb{R})$?
For any p for which you claim that $\varphi \in\left(L^{p}\right)^{*}$, give an upper bound for $\|\varphi\|_{\left(L^{p}\right)^{*}}$.
Solution: Set $g(x)=x^{-1 / 2} \chi_{[1, \infty)}$. Then $\|g\|_{q}^{q}=\int_{1}^{\infty} x^{-q / 2}$. We find that $g \in L^{q}$ iff $q>2$.
In this problem, view q as a function of $p, q=p /(p-1)$ so that $1 / p+1 / q=1$.
Case $1-p \in[1,2)$: In this case $\varphi \in\left(L^{p}(\mathbb{R})\right)^{*}$ since by the Hölder inequality $|\varphi(f)| \leq\|g\|_{q}\|f\|_{p}$, and $\|g\|_{q}$ is finite. Moreover, $\|\varphi\|_{\left(L^{p}\right)^{*}} \leq\|g\|_{L^{q}}=(2 /(q-2))^{1 / q}=((2 p-2) /(2-p))^{1-1 / p}$.

Case $2-p=2$: Pick α such that $\alpha>1 / 2$ and set $f_{\alpha}(x)=x^{-\alpha} \chi_{[1, \infty)}$. Then $f_{\alpha} \in L^{2}$, and $\left\|f_{\alpha}\right\|_{2}^{2}=\int_{1}^{\infty} x^{-2 \alpha} d x=(2 \alpha-1)^{-1}$. Moreover, $\varphi\left(f_{\alpha}\right)=\int_{1}^{\infty} x^{-1 / 2-\alpha} d x=2(2 \alpha-1)^{-1}$. Now

$$
\|\varphi\|=\sup _{f \neq 0} \frac{|\varphi(f)|}{\|f\|_{2}} \geq \sup _{\alpha>1 / 2} \frac{\left|\varphi\left(f_{\alpha}\right)\right|}{\left\|f_{\alpha}\right\|_{2}}=\sup _{\alpha>1 / 2} \frac{2(2 \alpha-1)^{-1}}{(2 \alpha-1)^{-1 / 2}}=\sup _{\alpha>1 / 2} 2(2 \alpha-1)^{-1 / 2}=\infty .
$$

We see that φ cannot be in the dual of L^{2}.
Case $3-p>2$: Pick α such that $1 / p<\alpha<1 / 2$ and set $f(x)=x^{-\alpha} \chi_{[1, \infty)}$. Then $f \in L^{p}$, but $\varphi(f)=\infty$, so φ cannot be a continuous linear functional on L^{p}.

Grading guide: Points are allocated as follows:
12 p for a perfect answer to the case $p \in[1,2)$.
3 p for a perfect answer to the case $p=2$.
5 p for a perfect answer to the case $p \in(2, \infty)$.
Note that Hölder's inequality immediately provides an upper bound for $\|\varphi\|_{\left(L^{p}\right)^{*}}$. finding a maximizer, or a maximizing sequence, in the expression $\|\varphi\|_{\left(L^{p}\right)^{*}}=\sup _{\|f\|_{p}=1}|\varphi(f)|$ is a harder. This was not required to receive full points.

[^0]: ${ }^{1}$ (i) A is compact since $\operatorname{ran}(A)$ has dimension 2. (ii) A is not compact. Set for instance $f_{n}=\chi_{(n, n+1)}$. Then $f_{n} \rightharpoonup 0$, but $\left(A f_{n}\right)$ does not converge in norm. (iii) A is compact. For any ε, set $M=\sqrt{\log (1 / \varepsilon)}$ and $A_{M}=\chi_{[-M, M]} A$. Then $\left\|A-A_{M}\right\| \leq \varepsilon$ and A_{M} is finite dimensional. (iv) $\sigma_{\mathrm{c}}(A)=[0,1]$. Recall that for a self-adjoint compact operator, the only possible point in the continuum spectrum is 0 .
 ${ }^{2}$ For (ii), note that in general, operators do not commute. E.g., check $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

