Homework set 8 — APPM5450, Spring 2011 — Hints
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Proving (1) is simple:
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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In bounding S5 we use that

X
T o(0)dz =0,
/legﬁ 5270

and that
lp(x) = p(0)] < |2 ||¢][u <
to obtain
T
So| = |1i —_ —(0))d
S = iy [ (o) — o0 e

e—0

Slimsup/ 2‘ il —— || [l¢ll1,0dx = 0.
‘x|<fLL/

<1



2

Problem 11.6: We find that

(D(log 2]) @) = —(log 2] ¢') = — /R log |¢] ¢/ (z) dx
= —;ii% [/_: log(—z)¢'(x) dx + /:O log(z)¢' (z) dz| .

Now simply perform partial integration in each term separately.

Problem 11.7: First prove that z-J(z) = 0 and that x-PV(1/z) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that - is distributive and
can pair any two distributions. Then on the one hand we would have

O(z) -z -PV(1l/x) =6(x) - (x-PV(1/z)) = () - 1 = 0(x).
But we would also have

d(z) -z -PV(1/z) = (x-6(x)) - PV(1/z) =0-PV(1/z) = 0.
This is a contradiction.

Problem 11.8: Fix ¢ € S. Set a = [ ¢, and define

(3) P(x) = /x (go(z) — aw(z)) dz.

Obviously, ¢ € C*, and
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1) as
P(x) = —/ ((p(z) - aw(z)) dz.

Then proceed as in the bound for x < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) To comute
D? f, simply differentiate ¢ in the same way. You should find that D? f = 24.

where

Problem 2: This is a fairly straight-forward application of the definitions.

Problem 3: Define for n =1,2,3, ..., the functions

] 1 T € [n — 4%, n] ,
Xn(z) = { 0 otherwise,

and set -
fl@)=> 2" xn(x).
n=1

Now prove that both (2) and (3) hold for any k.



