Homework set 2 — APPM5450 Spring 2011 — Solutions:

Exercise 7.13: Set I = [0, 1] and consider the equation

(1) TUf = —Ugg, rel, t>0,

for a complex valued function u = u(z,t) with homogeneous boundary conditions,
(2) u(0,t) = u(1,t) =0,

and initial condition

(3) u(z,0) = f(x).

Set

en(r) = V2 sin(nx).

Then (e,,)%%; forms an ON-basis for L2(I). We look for a solution

(4) u(a,t) = an(t) en(x)
n=1

Inserting (4) into (1) and (3), we find that «,, must satisfy
ial, =n%ay,, an(0) = fu,
where f,, = (en, f). The solution is
an(t) = fa e~in’t,

Since | (t)| = | fn| for any ¢, it follows directly from Parseval that
o0
[Ju(t HL2(1 Z’an Z\fn|2: 1£11%,
n=1

and that (using that the cosines also form an ON-set)

[lua (O)]72(r) = Han “ nv/2cos(na) 32 zzlnfnl2 = Ifl1*.

For a direct proof, set v = Re(u) and w = Im(u) so that u = v + iw. Then (1) takes the form

UVt = —Wgy Wt = Vgg-

d [* d [! 1
dt/(; ‘u|2d;c:dt/0 (v2+w2)dx:2/0 (Utv+wtw)d$

1 1
:2/ (—wmv—i—vmw)d:cZQ/(wwvm—vxwx)dx:()_
0 0

The second to last step was partial integration where the boundary terms vanish due to (2).
Analogously,

d 1 ) d 1 ) ) 1
— | |ugl“dx = / (v +wy)dx = 2/ (Ut Vg + Wyt wy) d
dt/o dt Jo 0

1 1
= 2/ (_Ut Vgr — Wt wzx) de = 2/ (—Ut wt + wy Ut) dr = 0.
0 0

In the second calculation we used differentiation, (2) takes the form

’Ut((),t) = vt(lat) = wt(oat) = wt(lat) =0, t>0.
1
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Exercise 8.3: Let P and @ be orthogonal projections. Set M = ran(P) and N = ran(Q). TFAE:
(a) MCN
(b) QP =P
(c) PQ=P
(d) [|[Pz|| <||Qz|]  Vz
(e) (z, Pz) < (z, Q) Y
Proof:

(a) = (b): Assume M C N. Then for any z, Pxr € M C N, so QPx = Px.

(b) = (a): Assume QP = P. Pick y € M. Then y = Pz for some x. Then Qy = QPx = Px =y
soy € N.

(a) & (o)

MCN & Ntcwmt
& Py=0 VyeN*t
& PI-Q)x=0 Vzx
& P =PQ

(c) = (d): Assume PQ = P. Since ||P|| <1 we have ||Pz|| = ||PQz|| < ||Qz|| for any x.

(d) = (a): Assume that (a) is false. Then there is an x € M\N. Since x € M we have x = Pz
and so
|1Pz|* = [l2]|* = ||Qz + (I — Q)z[|* = |Qx|]* +[|(I — Q)| |*.
Now observe that ||( — Q)z|| > 0 since z ¢ N. Consequently,
1Qa|l* = [|Pz|]” — [|( — Q)zl|* < || Pal®

so (d) cannot hold true.

(d) < (e): Simply observe that (v, Px) = (x, P?z) = (Pz, Pr) = ||Pz||?> and analogously
(z, Qz) = [|Qu|[*.

Note: You may want to draw a diagram over the implications to convince yourself that all equiv-
alencies have been proven.
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Exercise 8.4: First we prove that P, — I strongly. Fix any « € H. Since |J,_, ran(P,) = H,
we know that z € ran(Py) for some specific N. Then, since ran(P,) C ran(P,+1), we see that
x € ran(P,,) for any m > N. Consequently, P,z = z for any m > N so P,x — x (very rapidly!).

Next suppose that ||[I — P,|| — 0. Then there is some N such that || — Py|| < 1/2. Now observe
that I — Py is itself an orthogonal projection (onto ker(Py)) so it can only have norms 0 and 1.
It follows that ||I — Py|| = 0, which is to say that Py = I. Since H = ran(Py) C ran(Pyy1) C
ran(Pn42) C -+ - we see that P, = I for any n > N.

Problem 1: Let T'(t) denote the semigroup defined in Section 7.3 of the textbook. Prove that
T(t) — I strongly as t N\, 0. Prove that T'(¢) does not converge in norm.

Solution: We consider a slightly more general problem. Let (e;)52; be an ON-basis for a Hilbert
space H, and consider for ¢ > 0 the operator

T(t)f = Z In e—n2t En-
n=1

We will show that as ¢ \, 0, T'(t) — I strongly but not in norm.

To show T'(t) — I strongly, fix f € H. Fix e > 0. Set f, = (en, f) and pick N such that
> oo i1 | fnl? < €2 Then by Parseval

N , 9 %s) R 9
IT@f = fI2 =Dl =1 + 3 [fale™ = 1)
n=1 n=N+1
N , 9 00 N ) 9
SZ’fn(e’” t—1)‘ + 3 AP < e - | 42
n=1 n=N+1 n=1

Since only finitely many terms depend on ¢, we can now easily take the limit as t \, 0,
limsup ||T(t)f — f]|> < 4&2.
t\0
Since € was arbitrary, we see that limy o ||7°(t) f — f|| = 0.

To show that T'(t) does not converge to I in norm, we simply observe that for any ¢ > 0

IT(8) = 11| = sup [|(T'(t) — I) enl| = sup e — 1| = 1.
n n
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Problem 2: Suppose P is a projection on a Hilbert space H. TFAE:
(a) P is orthogonal, i.e. ker(P) = ran(P)™ .
(b) P is self-adjoint, i.e. (Pz,y) = (x, Py) Vz,v.
(¢) |P]l=0or1.

Proof:
(a) = (b): Assume ker(P) = ran(P)*. Pick any z,y € H. Then
(Pz,y)=( Pz, , Py+( - Ply) = (Pz, Py) = (Pz+ (I — P)z, Py) = (z, Py).
~~ ———

eran(pP) cker(p)

(b) = (c): Assume that (b) holds. Then for any =,
| Pa||* = (Pz, Pz) = (P’z, 2) = (P, z) < ||Pz|||«|l,

so |[|P]| < 1. Obviously it is possible for ||P|| to be zero. We need to prove that the only possible
non-zero value of ||P|| is one. To this end, note that if P # 0, then ran(P) # {0}. Now observe
that if  is a non-zero element in ran(P), we have Pz = x so ||P|| > 1.

(c) = (a): Assume that (a) does not hold. Then there exist x € ran(P) and y € ker(P) such that

(z,y) #0. Set a = (z, y)/|(z, y)| and z = ay. Then z € ker(P) and (z, z) = |(z, y)| € R4+. Set
w=x— zt.
Then ||Pw|| = ||x||, and
lwll? = ll=]* = 2t (z, 2) + ¢ ||2]]*,
For small ¢, we see that ||w|| < ||z|| = ||Pw]|| so ||P]| > 1.

No solution is given for Problem & since the problem itself outlines precisely how to solve it — just

fill in the details.



