Homework 13

12.4) Give an example of a monotonic decreasing sequence of nonnegative functions converging pointwise to a function f such that the equality in Theorem 12.33 (Monotone convergence) does not hold.

Consider
$$f_n(x) = \frac{1}{n}$$
 for all $x \in R$. Then $\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \infty$, whereas $\int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(x) dx = 0$.

Problem 1) Let $(f_n)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on R such that $\lim_{n\to\infty} f_n(x) = x$ for all $x \in R$. Specify which of the following limits necessarily exist, and give a formula for the limit in the cases where this is possible:

$$(1) \qquad \lim_{n\to\infty}\int_1^2 \frac{f_n(x)}{1+f_n(x)^2} dx$$

We can bound the integrand: $\left| \frac{f_n(x)}{1 + f_n(x)^2} \right| \le \sup_t \frac{|t|}{1 + t^2} \le 1$

Then, since $\int_{1}^{2} 1 dx = 1 < \infty$ dominated convergence applies:

$$\lim_{n \to \infty} \int_{1}^{2} \frac{f_{n}(x)}{1 + f_{n}(x)^{2}} dx = \int_{1}^{2} \lim_{n \to \infty} \frac{f_{n}(x)}{1 + f_{n}(x)^{2}} dx = \int_{1}^{2} \frac{x}{1 + x^{2}} dx = \left[\frac{\log(1 + x^{2})}{2} \right]_{1}^{2} = \log\left(\sqrt{\frac{5}{2}}\right)$$

(2)
$$\lim_{n\to\infty} \int_0^1 \frac{\sin(f_n(x))}{f_n(x)} dx$$

We can bound the integrand: $\left| \frac{\sin(f_n(x))}{f_n(x)} \right| \le \left| \frac{\sin(t)}{t} \right| \le 1$

Then, since $\int_0^1 1 dx = 1 < \infty$ dominated convergence applies:

$$\lim_{n \to \infty} \int_0^1 \frac{\sin(f_n(x))}{f_n(x)} dx = \int_0^1 \lim_{n \to \infty} \frac{\sin(f_n(x))}{f_n(x)} dx = \int_0^1 \frac{\sin(x)}{x} dx \approx 0.946083$$

(3)
$$\lim_{n\to\infty} \int_0^\infty \frac{\sin(f_n(x))}{f_n(x)} dx$$

We can bound the integrand: $\left| \frac{\sin(f_n(x))}{f_n(x)} \right| \le \left| \frac{\sin(t)}{t} \right| \le 1$

However, since $\int_0^\infty 1 dx = \infty$ dominated convergence does not apply.

For this problem we can actually achieve different values for the limit depending on $f_n(x)$.

a) Define
$$f_n(x) = \begin{cases} x & 0 \le x \le 2\pi n \\ \pi & x > 2\pi n \end{cases}$$
, then $\lim_{n \to \infty} \int_0^\infty \frac{\sin(f_n(x))}{f_n(x)} dx = \frac{\pi}{2}$

b) Note that $\frac{\sin(f_n(x))}{f_n(x)}$ oscillates about the x-axis with decreasing magnitude. For each n

we can construct $f_n(x)$ so that $\frac{\sin(f_n(x))}{f_n(x)}$ is made by adding up 2n sections of area above the x-

axis while counting just n sections of area below the x-axis. Then $\lim_{n\to\infty} \int_0^\infty \frac{\sin(f_n(x))}{f_n(x)} dx = \infty$

(4)
$$\lim_{N \to \infty} \int_0^1 \sum_{n=1}^N \frac{|f_n(x)|}{n^2 (1 + |f_n(x)|)} dx$$

Since every term in the sum is non-negative monotonic convergence applies:

$$\lim_{N \to \infty} \int_{0}^{1} \sum_{n=1}^{N} \frac{|f_{n}(x)|}{n^{2} (1 + |f_{n}(x)|)} dx = \int_{0}^{1} \sum_{n=1}^{\infty} \frac{|f_{n}(x)|}{n^{2} (1 + |f_{n}(x)|)} dx < \infty$$

We know that the limit exists and is finite, but what the actual limit is depends on $(f_n)_{n=1}^{\infty}$.

(5)
$$\lim_{N \to \infty} \int_0^\infty \sum_{n=1}^N \frac{1}{n^2 (1 + |f_n(x)|^2)} dx$$

Since every term in the sum is non-negative monotonic convergence applies:

$$\lim_{N \to \infty} \int_0^\infty \sum_{n=1}^N \frac{1}{n^2 (1 + |f_n(x)|^2)} dx = \int_0^\infty \sum_{n=1}^\infty \frac{1}{n^2 (1 + |f_n(x)|^2)} dx$$

Once again the limit exists, but now (depending on $(f_n)_{n=1}^{\infty}$) it might be infinite (the key difference is that the interval is no longer finite). Consider:

a)
$$f_n(x) = x$$
 for all n. Then $\int_0^\infty \sum_{n=1}^\infty \frac{1}{n^2(1+x^2)} dx = \sum_{n=1}^\infty \frac{1}{n^2} \int_0^\infty \frac{1}{(1+x^2)} dx = \frac{\pi^2}{6} \frac{\pi}{2} = \frac{\pi^3}{12}$

b) $f_n(x) = \begin{cases} x & 0 \le x \le n \\ 0 & x > n \end{cases}$. Then the integral is infinite.

Problem 2) Let $(f_n)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on R such that $|f_n(x)| \le 1$ and $\lim_{n \to \infty} f_n(x) = 1$ for all $x \in R$. Evaluate the following (justify your calculation): $\lim_{n \to \infty} \int_R f_n(\cos x) e^{-\frac{1}{2}(x-2\pi n)^2} dx$

$$\lim_{n \to \infty} \int_{R} f_{n}(\cos x) e^{-\frac{1}{2}(x-2\pi n)^{2}} dx = \lim_{n \to \infty} \int_{R} f_{n}(\cos(y+2\pi n)) e^{-\frac{1}{2}y^{2}} dy = \lim_{n \to \infty} \int_{R} f_{n}(\cos y) e^{-\frac{1}{2}y^{2}} dy = (*)$$

Note that the first equality is a substitution and the second uses the periodicity of cosine.

For all y we have
$$f_n(\cos y)e^{\frac{1}{2}y^2} \xrightarrow{n \to \infty} e^{\frac{1}{2}y^2}$$
 and $\left| f_n(\cos y)e^{\frac{1}{2}y^2} \right| \le e^{\frac{1}{2}y^2}$

Then, since $\int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy < \infty$, dominated convergence applies:

$$(*) = \lim_{n \to \infty} \int_{R} f_{n}(\cos y) e^{-\frac{1}{2}y^{2}} dy = \int_{R} \lim_{n \to \infty} f_{n}(\cos y) e^{-\frac{1}{2}y^{2}} dy = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^{2}} dy = \sqrt{2\pi}$$

Problem 3) The solution to this problem is mostly provided as a hint on the homework page. Below the holes in the solution (given as questions in the hint) are filled in.

- (3) What can you tell about Ω_{mn}^k in light of (2)? You can conclude that $\mu(\Omega_{mn}^k)^k = 0$
- (4) What do you know about Ω^k in view of your conclusion from (3)?

$$\mu\left(\left(\Omega^{k}\right)^{c}\right) = \mu\left(\bigcup_{m,n=N_{k}}^{\infty}\left(\Omega_{mn}^{k}\right)^{c}\right) \leq \sum_{m,n=N_{k}}^{\infty}\mu\left(\left(\Omega_{mn}^{k}\right)^{c}\right) = 0$$

(5) What do you know about Ω in view of your conclusion from (4)?

$$\mu(\Omega^c) = \mu\left(\bigcup_{k=1}^{\infty} (\Omega^k)^c\right) \le \sum_{k=1}^{\infty} \mu\left((\Omega^k)^c\right) = 0$$

(6) What can you tell about $(f_n(x))_{n=1}^{\infty}$ for $x \in \Omega$?

Because $(f_n(x))_{n=1}^{\infty}$ is Cauchy for $x \in \Omega$ it makes sense to define $f(x) = \lim_{n \to \infty} f_n(x)$ in this region.

For $x \in \Omega^c$ we can simply set f(x) = 0.

Fix $\varepsilon > 0$. Pick $k > 1/\varepsilon$. Then, for $n \ge N_k$ we have:

$$||f - f_n||_{\infty} = ess \sup_{x \in X} |f(x) - f_n(x)| = ess \sup_{x \in \Omega} |f(x) - f_n(x)| \le \sup_{x \in \Omega} |f(x) - f_n(x)| \le \sup_{x \in \Omega} |f(x) - f_n(x)| \le \sup_{x \in \Omega} |f_n(x) - f_n(x)| \le \lim_{m \to \infty} \sup_{x \in \Omega} |f_m(x) - f_n(x)| \le \lim_{m \to \infty} |f_m(x) - f_m(x)| \le \lim_{m \to$$

Note that the equality denoted by "(5)" uses $\mu(\Omega^c) = 0$ (proved in (5) above).

Because ε was arbitrary this implies that $\|f - f_n\|_{\infty} \to 0$