
Applied Analysis (APPM 5450): Midterm 3 — Solutions
8.30am – 9.50pm, April 19, 2010. Closed books.

Problem 1: (15 points) Let g, h ∈ L2(R) and set f = g∗h. Prove that ||f ||u ≤ ||g||L2 ||h||L2 (where
||f ||u = supx |f(x)|). Is it necessarily the case that f ∈ C0(R)? Motivate your answer briefly.

Solution:

We have

|f(x)| =
∣∣∣∣ 1√

2π

∫ ∞

−∞
eixtf̂(t) dt

∣∣∣∣ ≤ ∫ ∞

−∞

|f̂(t)|√
2π

dt.

Now f̂(t) =
√
2π ĝ(t) ĥ(t) so

|f(x)| ≤
∫ ∞

−∞
|ĝ(t) ĥ(t)| dt ≤ {Cauchy-Schwartz} ≤ ||ĝ||L2 ||ĥ||L2 = ||g||L2 ||h||L2 ,

where in the last equality we used that the Fourier transform preserves the L2-norm.

The Riemann-Lebesgue lemma asserts that if f̂ ∈ L1, then f ∈ C0. The calculation above tells us
that ||f̂ ||L1 ≤ ||g||L2 ||h||L2 , so yes, f ∈ C0.

Note: The inequality can easily be proven in physical space. Simply observe that

|f(x)| ≤
∫ ∞

−∞
|g(x− y)| |h(y)| dy ≤ {Cauchy-Schwartz}

≤
(∫ ∞

−∞
|g(x− y)|2dy

)1/2 (∫ ∞

−∞
|h(y)|2dy

)1/2

= ||g||L2 ||h||L2 .

However, some Riemann-Lebesgue-type argument is required in order to say that f ∈ C0.



Problem 2: (26 points) In this problem, S = S(R) is the Schwartz space over the real line, a is a
non-zero real number, and F is the Fourier transform.

(a) [6p] Define the operator Da : S → S via [Daφ](x) = φ(a x). Show that for some b, c ∈ R

(1) F Da φ = bDcF φ.

(b) [6p] State the appropriate definition of the operator Da : S∗ → S∗, and derive for T ∈ S∗ a
formula for FDaT analogous to (1). Be careful in motivating your work!

(c) [6p] Fix a function h ∈ Cb(R) (i.e. h is bounded and continuous), and set fn = D1/nh for
n = 1, 2, 3, . . . . Prove that the sequence (fn)

∞
n=1 converges in S∗ and give the limit.

(d) [6p] With fn as in (c), set f̂n = Ffn. Does the sequence (f̂n)
∞
n=1 converge in S∗? If so, to what?

(e*) [2p] Give an example of a distribution h ∈ S∗ such that (D1/nh)
∞
n=1 does not converge in S∗.

Solution:

(a) With the change of variables y = ax we find

[F Da φ](t) =
1√
2π

∫
e−ixtφ(ax) dx =

1√
2π

∫
e−iyt/aφ(y) dy/a =

1

a
φ̂(t/a) =

[
1

a
D1/aF φ

]
(t).

(b) To heuristically figure out the formula, we first consider the case where T is given by a regular
function f (say f ∈ Cc(R) or some such). Then

⟨Daf, φ⟩ =
∫

f(ax)φ(x) dx = {y = ax} =

∫
f(y)φ(y/a) dy/a = ⟨f, (1/a)D1/aφ⟩.

This inspires the formal definition:

For T ∈ S∗ and a ∈ R\{0}, define DaT via ⟨DaT, φ⟩ = ⟨T, (1/a)D1/a φ⟩.

We now get

⟨F DaT, φ⟩
(1)
= ⟨DaT, φ̂⟩

(2)
= ⟨T, (1/a)D1/a φ̂⟩

(3)
= ⟨T, F Da φ⟩

(1)
= ⟨F T, Da φ⟩

(2)
= ⟨(1/a)D1/aF T, φ⟩.

The relations (1) use the definition of F for a distribution. The relations (2) use the definition of
Da for a distribution. The relation (3) uses the result proven in (a).

(c) First we perform a heuristic calculation to see what the limit should be

lim
n→∞

⟨fn, φ⟩ = lim
n→∞

∫
h(x/n)φ(x) dx

maybe?
=

∫
lim
n→∞

h(x/n)φ(x) dx

∫
h(0)φ(x) dx = ⟨h(0), φ⟩.

In other words, if (fn) is to converge, it appears to converge to the constant function h(0). Now let
us prove this rigorously.

Fix φ ∈ S. Set M = ||h||u and L = ||φ||L1 (both M and L are finite). Fix an arbitrary ε > 0. We
need to find an N such that

(2) n ≥ N ⇒ |⟨fn, φ⟩ − ⟨h(0), φ⟩| =
∣∣∣∣∫ (h(x/n)− h(0))φ(x) dx

∣∣∣∣ < ε.



We first split the integral into a two parts:

(3) |⟨fn, φ⟩ − ⟨h(0), φ⟩| ≤
∫
|x|>R

|h(x/n)− h(0)| |φ(x)| dx︸ ︷︷ ︸
:=I1

+

∫
|x|≤R

|h(x/n)− h(0)| |φ(x)| dx︸ ︷︷ ︸
:=I2

.

Pick the split point R such that
∫
|x|≥R |φ(x)| dx < ε/(4M). Then

(4) I1 =

∫
|x|>R

|h(x/n)− h(0)| |φ(x)| dx ≤
∫
|x|>R

2M |φ(x)| dx < 2M
ε

4M
= ε/2.

Since h is continuous, there is a δ > 0 such that |h(y) − h(0)| < ε/(2L) whenever |y| ≤ δ. Pick N
such that N > R/δ. Then for n ≥ N , we have

(5) I2 =

∫
|x|≤R

|h(x/n)− h(0)| |φ(x)| dx <

∫
|x|≤R

ε

2L
|φ(x)| dx ≤ ε/2.

Combining (3), (4), and (5), we see that (2) must hold.

(d) Since F is a continuous map from S∗ to S∗, our proof in (c) that fn → f immediately implies

that f̂n → f̂ , so all that remains is to determine f̂ . We find that

⟨f̂ , φ⟩ = ⟨f, φ̂⟩ = ⟨h(0), φ̂⟩ = h(0)

∫
φ̂(t) dt =

√
2π h(0)φ(0) = ⟨

√
2π h(0) δ, φ⟩,

so f̂n →
√
2π h(0) δ.

(e) We saw in (c) that the continuity of h was key to the convergence of (fn). In consequence, we
try an h that is very much not continuous at the origin, the delta function. With h = δ, we find

⟨fn, φ⟩ = ⟨D1/nδ, φ⟩ = ⟨δ, nDn φ⟩ = nφ(0).

We see that the sequence (⟨fn, φ⟩)∞n=1 does not converge (unless φ(0) happens to be zero).



Problem 3: (25 points)

(a) [5p] For d a positive integer, and s a real number, define the Sobolev space Hs(Rd).

(b) [5p] For which s, if any, is it necessarily the case that all functions in Hs(Rd) are continuous?

(c) [10p] Let f ∈ L2(R). Show that the equation −u′′ + u = f has a unique solution u ∈ H2(R).

(d*) [5p] Give an example of a function f ∈ L2(R2) such that the equation

−∂2u

∂x21
+ u = f,

does not have a solution in H2(R2).

Solution:

(a) Hs(Rd) is the set of “all” functions f such that
∫
Rd(1 + |t|2)s |f̂(t)| ds < ∞.

(To be precise, Hs(Rd) is the Fourier image of the set of all measurable complex-valued functions
f on Rd such that

∫
Rd(1 + |t|2)s |f(t)| ds < ∞.)

(b) By Sobolev’s inequality: For s > d/2.

(c) In the Fourier domain, the equation reads

(t2 + 1) û(t) = f̂(t).

We immediately see that the function

u(x) =

[
F∗ f̂(t)

1 + t2

]
(x) =

1√
2π

∫ ∞

−∞
eixt

f̂(t)

1 + t2
dt

solves the equation. We find that

||u||2H2 =

∫ ∞

−∞
(1 + t2)2 |û(t)|2 dt =

∫ ∞

−∞
(1 + t2)2

|f̂(t)|2

(1 + t2)2
dt =

∫ ∞

−∞
|f̂(t)|2 dt = ||f ||2L2

so u ∈ H2. To show uniqueness, simply note that if u and v both solve the equation, then

(t2 + 1) û = f̂ and (t2 + 1) v̂ = f̂ ⇒ (t2 + 1) (û− v̂) = 0 ⇒ û = v̂, ⇒ u = v.

(d) The problem here is that while the equation is smoothing in the x1-direction, it does precisely
nothing in the x2-direction. There are many ways of constructing counter-examples, but we could
for instance set

f̂(t1, t2) =

{
1

(1+t2)1/2
|t1| ≤ 1,

0 |t1| > 1.

Then

||f ||2L2 = ||f̂ ||2L2 =

∫ ∞

−∞

∫ ∞

−∞
|f̂(t)|2 dt1 dt2 =

∫ ∞

−∞

∫ 1

−1

1

1 + t22
dt1 dt2 = 2

∫ ∞

−∞

1

1 + t22
dt2 = 2π

so f ∈ L2(R2). The solution u of the given equation satisfies

û(t1, t2) =

{
1

1+t21

1
(1+t2)1/2

|t1| ≤ 1,

0 |t1| > 1.



We see that u /∈ H2(R2) since

||u||2H2 =

∫ ∞

−∞

∫ ∞

−∞
(1 + |t|2)2 |û(t)|2 dt1 dt2 =

∫ ∞

−∞

∫ 1

−1

(1 + t21 + t22)
2

(1 + t21)
2 (1 + t22)

dt1 dt2

≥
∫ ∞

−∞

∫ 1

−1

(1 + 0 + t22)
2

(1 + 1)2 (1 + t22)
dt1 dt2 =

1

2

∫ ∞

−∞
(1 + t22) dt2 = ∞.

Problem 5: (12 points) Let N denote the set of positive integers, and let A denote the collection
of all subsets of N. Let (αn)

∞
n=1 be a sequence of real numbers, and define a function

µ : A → R : Ω 7→
∑
n∈Ω

αn.

Under what conditions on the numbers (αn) is µ a measure? Is it ever a finite measure? Is it ever
a σ-finite measure? No motivation required.

Solution:

µ is a measure if and only if all αn are non-negative. 1

µ is a finite if and only if

∞∑
n=1

αn is finite.

µ is always σ-finite since N =

∞∪
n=1

{n} and µ({n}) = αn < ∞.

1So called signed measures (and even complex valued measures) do exist but are not covered in this class.


