Applied Analysis (APPM 5450): Midterm 3 — Solutions
8.30am — 9.50pm, April 19, 2010. Closed books.

| fllu = sup, |f(z)|). Is it necessarily the case that f € Cy(R)? Motivate your answer briefly.

Problem 1: (15 points) Let g, h € L?(R) and set f = g*h. Prove that || f||u < ||gl|z2 ||||52 (where

Solution:

We have

_ L > ixt
If(:r)l—'m/_ooe f(t)dt‘</_oom
Now f(t) = v2m §(t) h(t) so
|f(z)] < /OO 19(t) h(t)| dt < {Cauchy-Schwartz} < [|g]|z2 ||hllr2 = |lg]lz2 |IR]] 2,

where in the last equality we used that the Fourier transform preserves the L?-norm.

The Riemann-Lebesgue lemma asserts that if f € L', then f € Cy. The calculation above tells us
that [[f|[r1 < |lg]lz2 [|hl[ L2, so yes, f € Co.

Note: The inequality can easily be proven in physical space. Simply observe that

(@) < / " lg(@ — )| |h(y)| dy < {Cauchy-Schwartz}

< ( [ ot y>|2dy> " < /- |h<y>|2dy)1/2 — lgllz2 1Al 2

However, some Riemann-Lebesgue-type argument is required in order to say that f € Cy.



Problem 2: (26 points) In this problem, S = S(R) is the Schwartz space over the real line, a is a
non-zero real number, and F is the Fourier transform.

(a) [6p] Define the operator D, : & — S via [Dyp](z) = ¢(az). Show that for some b,c € R

(1) FDgp=bD,Fe.

(b) [6p] State the appropriate definition of the operator D, : §* — §*, and derive for T' € §* a
formula for FD,T analogous to (1). Be careful in motivating your work!

(c) [6p] Fix a function h € CL(R) (i.e. h is bounded and continuous), and set f, = Dy/,h for
n=1,2,3,.... Prove that the sequence (f)>2, converges in S* and give the limit.

(d) [6p] With f, as in (c), set f,, = Ff,. Does the sequence (f,)22, converge in $*? If so, to what?

(e*) [2p] Give an example of a distribution h € S* such that (D;/,h);2; does not converge in S*.

Solution:

(a) With the change of variables y = ax we find

D0 o [ tane = [t -

(b) To heuristically figure out the formula, we first consider the case where T is given by a regular
function f (say f € C.(R) or some such). Then

%@(t/a) = [i Dl/afw] (t).

(Duf, ¢ / flaz) o) do = {y = az} = / £(9) p(y/a) dy/a = (f, (1/a)Dy /).

This inspires the formal definition:

For T'€ §* and a € R\{0}, define D, T via (D,T, p) = (T, (1/a) D4 ¢)-

We now get

@)

F o, o) @

(DT, 3y 2 O

(7, (1/a) Dy d) & (7, FDuig) Y (7T, D) 2 (1/a) Dy FT. ).

The relations (1) use the definition of F for a distribution. The relations (2) use the definition of
D, for a distribution. The relation (3) uses the result proven in (a).

(c) First we perform a heuristic calculation to see what the limit should be

T (o) = i [ ha/m) p()ds ™ [ i ho/n) ol@) do [ 10) plo)do = (1(0), ¢)

n—oo

In other words, if (f,,) is to converge, it appears to converge to the constant function h(0). Now let
us prove this rigorously.

Fix p € S. Set M = ||h||y and L = ||¢||r1 (both M and L are finite). Fix an arbitrary ¢ > 0. We
need to find an N such that

(2) n=N = |[(fu @) = (h(0), 9)| = ‘/(h(fv/n) —h(0)) p(x)dr| <e




We first split the integral into a two parts:

B)  [{fn, @) = (h(0), ¢)| S/ |h(z/n) = h(0)| |¢(Jf)!d93+/ [h(z/n) — h(0)| ()| da .

|z|>R |z|<R

=1 =1
Pick the split point R such that f‘x|>R lp(x)| dx < e/(4M). Then

@ h= [ e ) le@lde < [ oMlp)de <20 5 =2

le[>R le[>R 4M
Since h is continuous, there is a § > 0 such that |h(y) — h(0)| < e/(2L) whenever |y| < §. Pick N
such that N > R/d. Then for n > N, we have

5
) B[ ) —rOllewlde< [ i@l <2
Combining (3), (4), and (5), we see that (2) must hold.

(d) Since F is a continuous map from S* to S*, our proof in (c) that f,, — f immediately implies
that f, — f, so all that remains is to determine f. We find that

~

(f, o) ={f, &) = (h(0), &) = h(O)/sb(t) dt = V2m h(0) p(0) = (V2m h(0) 4, @),
S0 fn — V21 h(0) 4.

(e) We saw in (c) that the continuity of h was key to the convergence of (f,). In consequence, we
try an h that is very much not continuous at the origin, the delta function. With h = 4, we find

(s ) = (Db, @) = (8, n. D @) = 1n.9(0).
We see that the sequence ((fy, ¢))s>; does not converge (unless ¢(0) happens to be zero).



Problem 3: (25 points)

(a) [5p] For d a positive integer, and s a real number, define the Sobolev space H*(R?).
(b) [5p] For which s, if any, is it necessarily the case that all functions in H*(R¢) are continuous?
(c) [10p] Let f € L?(R). Show that the equation —u” +u = f has a unique solution u € H?(R).
(d*) [5p] Give an example of a function f € L?(R?) such that the equation
0%u
" o2 +u=f,

does not have a solution in H?(R?).

Solution:
(a) H*(R?) is the set of “all” functions f such that [, (14 [¢[?)® |f(t)|ds < .

(To be precise, H*(R?) is the Fourier image of the set of all measurable complex-valued functions
f on R? such that [pa(1+ [¢%)*[f(t)|ds < oc.)

(b) By Sobolev’s inequality: For s > d/2.
(c) In the Fourier domain, the equation reads

(£ + 1) at) = f(t).
We immediately see that the function
f)
1+t

m:t f

\/%/ S

u(z) = | F*

solves the equation. We find that
2 _ [T PICTPOANT SR b 2‘f()|2 I AN S 2
lulffe = [ L+ a@)Pdt= [ (1+1%)? a+ee dt = @) dt = [ f]]7
—0 —00 —o0
so u € H?. To show uniqueness, simply note that if 4 and v both solve the equation, then

B +Da=f and 2+Dio=f = @E+)(a—-0)=0 = a=10 = u=o.

(d) The problem here is that while the equation is smoothing in the x;-direction, it does precisely
nothing in the xo-direction. There are many ways of constructing counter-examples, but we could
for instance set

[t <1,

1
f(tr,ta) =4 (H)2
fltt2) {o | > 1.

Then

<1
=07 = [ [ ot [T [ =2 [T i =2

so f € L?(R?). The solution u of the given equation satisfies

1 1

T2 t] <1

G(ty, o) = {  LHt (142)1/2 ] <1,
0 |t1] > 1.



We see that u ¢ H?(R?) since

o) 00 1 t2—|—t2)
2 2 2
= 1 t dty dt dty dt

1+0+t2) 1 [ 9
dty dty = = 1+ t3) dty =
// A+12a+g) " 2/oo(+2) 2=

Problem 5: (12 points) Let N denote the set of positive integers, and let A denote the collection
of all subsets of N. Let ()5 be a sequence of real numbers, and define a function

p: A—=R: Ql—)Zan.
neq)

Under what conditions on the numbers () is u a measure? Is it ever a finite measure? Is it ever
a o-finite measure? No motivation required.

Solution:

1 is a measure if and only if all o, are non-negative. !

oo
i is a finite if and only if Z o, is finite.

n=1

p is always o-finite since N = U {n} and p({n}) = a, < 0.

n=1

186 called signed measures (and even complex valued measures) do exist but are not covered in this class.



