Applied Analysis (APPM 5450): Midterm 3 - Solutions

8.30am - 9.50 pm , April 19, 2010. Closed books.

Problem 1: (15 points) Let $g, h \in L^{2}(\mathbb{R})$ and set $f=g * h$. Prove that $\|f\|_{\mathrm{u}} \leq\|g\|_{L^{2}}\|h\|_{L^{2}}$ (where $\left.\|f\|_{\mathrm{u}}=\sup _{x}|f(x)|\right)$. Is it necessarily the case that $f \in C_{0}(\mathbb{R})$? Motivate your answer briefly.

Solution:

We have

$$
|f(x)|=\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i x t} \hat{f}(t) d t\right| \leq \int_{-\infty}^{\infty} \frac{|\hat{f}(t)|}{\sqrt{2 \pi}} d t
$$

Now $\hat{f}(t)=\sqrt{2 \pi} \hat{g}(t) \hat{h}(t)$ so

$$
|f(x)| \leq \int_{-\infty}^{\infty}|\hat{g}(t) \hat{h}(t)| d t \leq\{\text { Cauchy-Schwartz }\} \leq\|\hat{g}\|_{L^{2}}\|\hat{h}\|_{L^{2}}=\|g\|_{L^{2}}\|h\|_{L^{2}}
$$

where in the last equality we used that the Fourier transform preserves the L^{2}-norm.
The Riemann-Lebesgue lemma asserts that if $\hat{f} \in L^{1}$, then $f \in C_{0}$. The calculation above tells us that $\|\hat{f}\|_{L^{1}} \leq\|g\|_{L^{2}}\|h\|_{L^{2}}$, so yes, $f \in C_{0}$.

Note: The inequality can easily be proven in physical space. Simply observe that

$$
\begin{aligned}
|f(x)| \leq \int_{-\infty}^{\infty}|g(x-y)||h(y)| d y & \leq\{\text { Cauchy-Schwartz }\} \\
& \leq\left(\int_{-\infty}^{\infty}|g(x-y)|^{2} d y\right)^{1 / 2}\left(\int_{-\infty}^{\infty}|h(y)|^{2} d y\right)^{1 / 2}=\|g\|_{L^{2}}\|h\|_{L^{2}} .
\end{aligned}
$$

However, some Riemann-Lebesgue-type argument is required in order to say that $f \in C_{0}$.

Problem 2: (26 points) In this problem, $\mathcal{S}=\mathcal{S}(\mathbb{R})$ is the Schwartz space over the real line, a is a non-zero real number, and \mathcal{F} is the Fourier transform.
(a) [6p] Define the operator $D_{a}: \mathcal{S} \rightarrow \mathcal{S}$ via $\left[D_{a} \varphi\right](x)=\varphi(a x)$. Show that for some $b, c \in \mathbb{R}$

$$
\begin{equation*}
\mathcal{F} D_{a} \varphi=b D_{c} \mathcal{F} \varphi \tag{1}
\end{equation*}
$$

(b) $[6 \mathrm{p}]$ State the appropriate definition of the operator $D_{a}: \mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$, and derive for $T \in \mathcal{S}^{*}$ a formula for $\mathcal{F} D_{a} T$ analogous to (1). Be careful in motivating your work!
(c) $[6 \mathrm{p}]$ Fix a function $h \in C_{\mathrm{b}}(\mathbb{R})$ (i.e. h is bounded and continuous), and set $f_{n}=D_{1 / n} h$ for $n=1,2,3, \ldots$. Prove that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges in \mathcal{S}^{*} and give the limit.
(d) $[6 \mathrm{p}]$ With f_{n} as in (c), set $\hat{f}_{n}=\mathcal{F} f_{n}$. Does the sequence $\left(\hat{f}_{n}\right)_{n=1}^{\infty}$ converge in \mathcal{S}^{*} ? If so, to what?
$\left(\mathrm{e}^{*}\right)[2 \mathrm{p}]$ Give an example of a distribution $h \in \mathcal{S}^{*}$ such that $\left(D_{1 / n} h\right)_{n=1}^{\infty}$ does not converge in \mathcal{S}^{*}.

Solution:

(a) With the change of variables $y=a x$ we find

$$
\left[\mathcal{F} D_{a} \varphi\right](t)=\frac{1}{\sqrt{2 \pi}} \int e^{-i x t} \varphi(a x) d x=\frac{1}{\sqrt{2 \pi}} \int e^{-i y t / a} \varphi(y) d y / a=\frac{1}{a} \hat{\varphi}(t / a)=\left[\frac{1}{a} D_{1 / a} \mathcal{F} \varphi\right](t)
$$

(b) To heuristically figure out the formula, we first consider the case where T is given by a regular function f (say $f \in C_{\mathrm{c}}(\mathbb{R})$ or some such). Then

$$
\left\langle D_{a} f, \varphi\right\rangle=\int f(a x) \varphi(x) d x=\{y=a x\}=\int f(y) \varphi(y / a) d y / a=\left\langle f,(1 / a) D_{1 / a} \varphi\right\rangle
$$

This inspires the formal definition:

$$
\text { For } T \in \mathcal{S}^{*} \text { and } a \in \mathbb{R} \backslash\{0\} \text {, define } D_{a} T \text { via }\left\langle D_{a} T, \varphi\right\rangle=\left\langle T,(1 / a) D_{1 / a} \varphi\right\rangle \text {. }
$$

We now get

$$
\left\langle\mathcal{F} D_{a} T, \varphi\right\rangle \stackrel{(1)}{=}\left\langle D_{a} T, \hat{\varphi}\right\rangle \stackrel{(2)}{=}\left\langle T,(1 / a) D_{1 / a} \hat{\varphi}\right\rangle \stackrel{(3)}{=}\left\langle T, \mathcal{F} D_{a} \varphi\right\rangle \stackrel{(1)}{=}\left\langle\mathcal{F} T, D_{a} \varphi\right\rangle \stackrel{(2)}{=}\left\langle(1 / a) D_{1 / a} \mathcal{F} T, \varphi\right\rangle .
$$

The relations (1) use the definition of \mathcal{F} for a distribution. The relations (2) use the definition of D_{a} for a distribution. The relation (3) uses the result proven in (a).
(c) First we perform a heuristic calculation to see what the limit should be

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}, \varphi\right\rangle=\lim _{n \rightarrow \infty} \int h(x / n) \varphi(x) d x \stackrel{\text { maybe? }}{=} \int \lim _{n \rightarrow \infty} h(x / n) \varphi(x) d x \int h(0) \varphi(x) d x=\langle h(0), \varphi\rangle .
$$

In other words, if $\left(f_{n}\right)$ is to converge, it appears to converge to the constant function $h(0)$. Now let us prove this rigorously.

Fix $\varphi \in \mathcal{S}$. Set $M=\|h\|_{\mathrm{u}}$ and $L=\|\varphi\|_{L^{1}}$ (both M and L are finite). Fix an arbitrary $\varepsilon>0$. We need to find an N such that

$$
\begin{equation*}
n \geq N \quad \Rightarrow \quad\left|\left\langle f_{n}, \varphi\right\rangle-\langle h(0), \varphi\rangle\right|=\left|\int(h(x / n)-h(0)) \varphi(x) d x\right|<\varepsilon \tag{2}
\end{equation*}
$$

We first split the integral into a two parts:

$$
\begin{equation*}
\left|\left\langle f_{n}, \varphi\right\rangle-\langle h(0), \varphi\rangle\right| \leq \underbrace{\int_{|x|>R}|h(x / n)-h(0)||\varphi(x)| d x}_{:=I_{1}}+\underbrace{\int_{|x| \leq R}|h(x / n)-h(0)||\varphi(x)| d x}_{:=I_{2}} . \tag{3}
\end{equation*}
$$

Pick the split point R such that $\int_{|x| \geq R}|\varphi(x)| d x<\varepsilon /(4 M)$. Then

$$
\begin{equation*}
I_{1}=\int_{|x|>R}|h(x / n)-h(0)||\varphi(x)| d x \leq \int_{|x|>R} 2 M|\varphi(x)| d x<2 M \frac{\varepsilon}{4 M}=\varepsilon / 2 . \tag{4}
\end{equation*}
$$

Since h is continuous, there is a $\delta>0$ such that $|h(y)-h(0)|<\varepsilon /(2 L)$ whenever $|y| \leq \delta$. Pick N such that $N>R / \delta$. Then for $n \geq N$, we have

$$
\begin{equation*}
I_{2}=\int_{|x| \leq R}|h(x / n)-h(0)||\varphi(x)| d x<\int_{|x| \leq R} \frac{\varepsilon}{2 L}|\varphi(x)| d x \leq \varepsilon / 2 . \tag{5}
\end{equation*}
$$

Combining (3), (4), and (5), we see that (2) must hold.
(d) Since \mathcal{F} is a continuous map from \mathcal{S}^{*} to \mathcal{S}^{*}, our proof in (c) that $f_{n} \rightarrow f$ immediately implies that $\hat{f}_{n} \rightarrow \hat{f}$, so all that remains is to determine \hat{f}. We find that

$$
\langle\hat{f}, \varphi\rangle=\langle f, \hat{\varphi}\rangle=\langle h(0), \hat{\varphi}\rangle=h(0) \int \hat{\varphi}(t) d t=\sqrt{2 \pi} h(0) \varphi(0)=\langle\sqrt{2 \pi} h(0) \delta, \varphi\rangle,
$$

so $\hat{f}_{n} \rightarrow \sqrt{2 \pi} h(0) \delta$.
(e) We saw in (c) that the continuity of h was key to the convergence of $\left(f_{n}\right)$. In consequence, we try an h that is very much not continuous at the origin, the delta function. With $h=\delta$, we find

$$
\left\langle f_{n}, \varphi\right\rangle=\left\langle D_{1 / n} \delta, \varphi\right\rangle=\left\langle\delta, n D_{n} \varphi\right\rangle=n \varphi(0) .
$$

We see that the sequence $\left(\left\langle f_{n}, \varphi\right\rangle\right)_{n=1}^{\infty}$ does not converge (unless $\varphi(0)$ happens to be zero).

Problem 3: (25 points)
(a) [5p] For d a positive integer, and s a real number, define the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$.
(b) [5p] For which s, if any, is it necessarily the case that all functions in $H^{s}\left(\mathbb{R}^{d}\right)$ are continuous?
(c) $[10 \mathrm{p}]$ Let $f \in L^{2}(\mathbb{R})$. Show that the equation $-u^{\prime \prime}+u=f$ has a unique solution $u \in H^{2}(\mathbb{R})$.
$\left(d^{*}\right)[5 p]$ Give an example of a function $f \in L^{2}\left(\mathbb{R}^{2}\right)$ such that the equation

$$
-\frac{\partial^{2} u}{\partial x_{1}^{2}}+u=f
$$

does not have a solution in $H^{2}\left(\mathbb{R}^{2}\right)$.

Solution:

(a) $H^{s}\left(\mathbb{R}^{d}\right)$ is the set of "all" functions f such that $\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{s}|\hat{f}(t)| d s<\infty$.
(To be precise, $H^{s}\left(\mathbb{R}^{d}\right)$ is the Fourier image of the set of all measurable complex-valued functions f on \mathbb{R}^{d} such that $\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{s}|f(t)| d s<\infty$.)
(b) By Sobolev's inequality: For $s>d / 2$.
(c) In the Fourier domain, the equation reads

$$
\left(t^{2}+1\right) \hat{u}(t)=\hat{f}(t)
$$

We immediately see that the function

$$
u(x)=\left[\mathcal{F}^{*} \frac{\hat{f}(t)}{1+t^{2}}\right](x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i x t} \frac{\hat{f}(t)}{1+t^{2}} d t
$$

solves the equation. We find that

$$
\|u\|_{H^{2}}^{2}=\int_{-\infty}^{\infty}\left(1+t^{2}\right)^{2}|\hat{u}(t)|^{2} d t=\int_{-\infty}^{\infty}\left(1+t^{2}\right)^{2} \frac{|\hat{f}(t)|^{2}}{\left(1+t^{2}\right)^{2}} d t=\int_{-\infty}^{\infty}|\hat{f}(t)|^{2} d t=\|f\|_{L^{2}}^{2}
$$

so $u \in H^{2}$. To show uniqueness, simply note that if u and v both solve the equation, then

$$
\left(t^{2}+1\right) \hat{u}=\hat{f} \quad \text { and } \quad\left(t^{2}+1\right) \hat{v}=\hat{f} \quad \Rightarrow \quad\left(t^{2}+1\right)(\hat{u}-\hat{v})=0 \quad \Rightarrow \quad \hat{u}=\hat{v}, \quad \Rightarrow \quad u=v
$$

(d) The problem here is that while the equation is smoothing in the x_{1}-direction, it does precisely nothing in the x_{2}-direction. There are many ways of constructing counter-examples, but we could for instance set

$$
\hat{f}\left(t_{1}, t_{2}\right)= \begin{cases}\frac{1}{\left(1+t_{2}\right)^{1 / 2}} & \left|t_{1}\right| \leq 1 \\ 0 & \left|t_{1}\right|>1\end{cases}
$$

Then

$$
\|f\|_{L^{2}}^{2}=\|\hat{f}\|_{L^{2}}^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\hat{f}(t)|^{2} d t_{1} d t_{2}=\int_{-\infty}^{\infty} \int_{-1}^{1} \frac{1}{1+t_{2}^{2}} d t_{1} d t_{2}=2 \int_{-\infty}^{\infty} \frac{1}{1+t_{2}^{2}} d t_{2}=2 \pi
$$

so $f \in L^{2}\left(\mathbb{R}^{2}\right)$. The solution u of the given equation satisfies

$$
\hat{u}\left(t_{1}, t_{2}\right)= \begin{cases}\frac{1}{1+t_{1}^{2}} \frac{1}{\left(1+t_{2}\right)^{1 / 2}} & \left|t_{1}\right| \leq 1 \\ 0 & \left|t_{1}\right|>1\end{cases}
$$

We see that $u \notin H^{2}\left(\mathbb{R}^{2}\right)$ since

$$
\begin{aligned}
&\|u\|_{H^{2}}^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(1+|t|^{2}\right)^{2}|\hat{u}(t)|^{2} d t_{1} d t_{2}=\int_{-\infty}^{\infty} \int_{-1}^{1} \frac{\left(1+t_{1}^{2}+t_{2}^{2}\right)^{2}}{\left(1+t_{1}^{2}\right)^{2}\left(1+t_{2}^{2}\right)} d t_{1} d t_{2} \\
& \geq \int_{-\infty}^{\infty} \int_{-1}^{1} \frac{\left(1+0+t_{2}^{2}\right)^{2}}{(1+1)^{2}\left(1+t_{2}^{2}\right)} d t_{1} d t_{2}=\frac{1}{2} \int_{-\infty}^{\infty}\left(1+t_{2}^{2}\right) d t_{2}=\infty
\end{aligned}
$$

Problem 5: (12 points) Let \mathbb{N} denote the set of positive integers, and let \mathcal{A} denote the collection of all subsets of \mathbb{N}. Let $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers, and define a function

$$
\mu: \mathcal{A} \rightarrow \mathbb{R}: \Omega \mapsto \sum_{n \in \Omega} \alpha_{n}
$$

Under what conditions on the numbers $\left(\alpha_{n}\right)$ is μ a measure? Is it ever a finite measure? Is it ever a σ-finite measure? No motivation required.

Solution:

μ is a measure if and only if all α_{n} are non-negative. ${ }^{1}$
μ is a finite if and only if $\sum_{n=1}^{\infty} \alpha_{n}$ is finite.
μ is always σ-finite since $\mathbb{N}=\bigcup_{n=1}^{\infty}\{n\}$ and $\mu(\{n\})=\alpha_{n}<\infty$.

[^0]
[^0]: ${ }^{1}$ So called signed measures (and even complex valued measures) do exist but are not covered in this class.

