Applied Analysis (APPM 5450): Midterm 3 — Solutions

8.30am – 9.50pm, April 19, 2010. Closed books.

Problem 1: (15 points) Let $g, h \in L^2(\mathbb{R})$ and set f = g * h. Prove that $||f||_u \leq ||g||_{L^2} ||h||_{L^2}$ (where $||f||_u = \sup_x |f(x)|$). Is it necessarily the case that $f \in C_0(\mathbb{R})$? Motivate your answer briefly.

Solution:

We have

$$|f(x)| = \left|\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ixt} \hat{f}(t) dt\right| \le \int_{-\infty}^{\infty} \frac{|\hat{f}(t)|}{\sqrt{2\pi}} dt.$$

Now $\hat{f}(t) = \sqrt{2\pi} \, \hat{g}(t) \, \hat{h}(t)$ so

$$|f(x)| \le \int_{-\infty}^{\infty} |\hat{g}(t) \, \hat{h}(t)| \, dt \le \{ \text{Cauchy-Schwartz} \} \le ||\hat{g}||_{L^2} \, ||\hat{h}||_{L^2} = ||g||_{L^2} \, ||h||_{L^2},$$

where in the last equality we used that the Fourier transform preserves the L^2 -norm.

The Riemann-Lebesgue lemma asserts that if $\hat{f} \in L^1$, then $f \in C_0$. The calculation above tells us that $||\hat{f}||_{L^1} \leq ||g||_{L^2} ||h||_{L^2}$, so yes, $f \in C_0$.

Note: The inequality can easily be proven in physical space. Simply observe that

$$\begin{split} |f(x)| &\leq \int_{-\infty}^{\infty} |g(x-y)| \, |h(y)| \, dy \leq \{ \text{Cauchy-Schwartz} \} \\ &\leq \left(\int_{-\infty}^{\infty} |g(x-y)|^2 dy \right)^{1/2} \, \left(\int_{-\infty}^{\infty} |h(y)|^2 dy \right)^{1/2} = ||g||_{L^2} \, ||h||_{L^2}. \end{split}$$

However, some Riemann-Lebesgue-type argument is required in order to say that $f \in C_0$.

Problem 2: (26 points) In this problem, $S = S(\mathbb{R})$ is the Schwartz space over the real line, *a* is a <u>non-zero</u> real number, and \mathcal{F} is the Fourier transform.

(a) [6p] Define the operator $D_a: \mathcal{S} \to \mathcal{S}$ via $[D_a \varphi](x) = \varphi(a x)$. Show that for some $b, c \in \mathbb{R}$

(1)
$$\mathcal{F} D_a \varphi = b D_c \mathcal{F} \varphi.$$

(b) [6p] State the appropriate definition of the operator $D_a: S^* \to S^*$, and derive for $T \in S^*$ a formula for $\mathcal{F}D_aT$ analogous to (1). Be careful in motivating your work!

(c) [6p] Fix a function $h \in C_{\rm b}(\mathbb{R})$ (*i.e.* h is bounded and continuous), and set $f_n = D_{1/n}h$ for $n = 1, 2, 3, \ldots$ Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges in \mathcal{S}^* and give the limit.

(d) [6p] With f_n as in (c), set $\hat{f}_n = \mathcal{F}f_n$. Does the sequence $(\hat{f}_n)_{n=1}^{\infty}$ converge in \mathcal{S}^* ? If so, to what? (e*) [2p] Give an example of a distribution $h \in \mathcal{S}^*$ such that $(D_{1/n}h)_{n=1}^{\infty}$ does <u>not</u> converge in \mathcal{S}^* .

Solution:

(a) With the change of variables y = ax we find

$$[\mathcal{F} D_a \varphi](t) = \frac{1}{\sqrt{2\pi}} \int e^{-ixt} \varphi(ax) \, dx = \frac{1}{\sqrt{2\pi}} \int e^{-iyt/a} \varphi(y) \, dy/a = \frac{1}{a} \hat{\varphi}(t/a) = \left[\frac{1}{a} D_{1/a} \mathcal{F} \varphi\right](t).$$

(b) To heuristically figure out the formula, we first consider the case where T is given by a regular function f (say $f \in C_{c}(\mathbb{R})$ or some such). Then

$$\langle D_a f, \varphi \rangle = \int f(ax) \varphi(x) \, dx = \{ y = ax \} = \int f(y) \varphi(y/a) \, dy/a = \langle f, (1/a) D_{1/a} \varphi \rangle.$$

This inspires the formal definition:

For
$$T \in \mathcal{S}^*$$
 and $a \in \mathbb{R} \setminus \{0\}$, define $D_a T$ via $\langle D_a T, \varphi \rangle = \langle T, (1/a) D_{1/a} \varphi \rangle$.

We now get

$$\langle \mathcal{F} D_a T, \varphi \rangle \stackrel{(1)}{=} \langle D_a T, \hat{\varphi} \rangle \stackrel{(2)}{=} \langle T, (1/a) D_{1/a} \hat{\varphi} \rangle \stackrel{(3)}{=} \langle T, \mathcal{F} D_a \varphi \rangle \stackrel{(1)}{=} \langle \mathcal{F} T, D_a \varphi \rangle \stackrel{(2)}{=} \langle (1/a) D_{1/a} \mathcal{F} T, \varphi \rangle$$

The relations (1) use the definition of \mathcal{F} for a distribution. The relations (2) use the definition of D_a for a distribution. The relation (3) uses the result proven in (a).

(c) First we perform a heuristic calculation to see what the limit should be

$$\lim_{n \to \infty} \langle f_n, \varphi \rangle = \lim_{n \to \infty} \int h(x/n) \varphi(x) \, dx \stackrel{\text{maybe}?}{=} \int \lim_{n \to \infty} h(x/n) \varphi(x) \, dx \int h(0) \varphi(x) \, dx = \langle h(0), \varphi \rangle.$$

In other words, if (f_n) is to converge, it appears to converge to the constant function h(0). Now let us prove this rigorously.

Fix $\varphi \in S$. Set $M = ||h||_{u}$ and $L = ||\varphi||_{L^1}$ (both M and L are finite). Fix an arbitrary $\varepsilon > 0$. We need to find an N such that

(2)
$$n \ge N \Rightarrow |\langle f_n, \varphi \rangle - \langle h(0), \varphi \rangle| = \left| \int (h(x/n) - h(0)) \varphi(x) \, dx \right| < \varepsilon.$$

We first split the integral into a two parts:

$$(3) \qquad |\langle f_n, \varphi \rangle - \langle h(0), \varphi \rangle| \leq \underbrace{\int_{|x|>R} |h(x/n) - h(0)| \, |\varphi(x)| \, dx}_{:=I_1} + \underbrace{\int_{|x|\leq R} |h(x/n) - h(0)| \, |\varphi(x)| \, dx}_{:=I_2}.$$

Pick the split point R such that $\int_{|x|\geq R} |\varphi(x)|\,dx < \varepsilon/(4M).$ Then

(4)
$$I_1 = \int_{|x|>R} |h(x/n) - h(0)| \, |\varphi(x)| \, dx \le \int_{|x|>R} 2M \, |\varphi(x)| \, dx < 2M \, \frac{\varepsilon}{4M} = \varepsilon/2.$$

Since h is continuous, there is a $\delta > 0$ such that $|h(y) - h(0)| < \varepsilon/(2L)$ whenever $|y| \le \delta$. Pick N such that $N > R/\delta$. Then for $n \ge N$, we have

(5)
$$I_2 = \int_{|x| \le R} |h(x/n) - h(0)| |\varphi(x)| \, dx < \int_{|x| \le R} \frac{\varepsilon}{2L} |\varphi(x)| \, dx \le \varepsilon/2.$$

Combining (3), (4), and (5), we see that (2) must hold.

(d) Since \mathcal{F} is a continuous map from \mathcal{S}^* to \mathcal{S}^* , our proof in (c) that $f_n \to f$ immediately implies that $\hat{f}_n \to \hat{f}$, so all that remains is to determine \hat{f} . We find that

$$\langle \hat{f}, \varphi \rangle = \langle f, \hat{\varphi} \rangle = \langle h(0), \hat{\varphi} \rangle = h(0) \int \hat{\varphi}(t) \, dt = \sqrt{2\pi} \, h(0) \, \varphi(0) = \langle \sqrt{2\pi} \, h(0) \, \delta, \varphi \rangle,$$

so $\hat{f}_n \to \sqrt{2\pi} h(0) \delta$.

(e) We saw in (c) that the continuity of h was key to the convergence of (f_n) . In consequence, we try an h that is very much not continuous at the origin, the delta function. With $h = \delta$, we find

$$\langle f_n, \varphi \rangle = \langle D_{1/n} \delta, \varphi \rangle = \langle \delta, n D_n \varphi \rangle = n \varphi(0).$$

We see that the sequence $(\langle f_n, \varphi \rangle)_{n=1}^{\infty}$ does not converge (unless $\varphi(0)$ happens to be zero).

Problem 3: (25 points)

- (a) [5p] For d a positive integer, and s a real number, define the Sobolev space $H^{s}(\mathbb{R}^{d})$.
- (b) [5p] For which s, if any, is it necessarily the case that all functions in $H^{s}(\mathbb{R}^{d})$ are continuous?
- (c) [10p] Let $f \in L^2(\mathbb{R})$. Show that the equation -u'' + u = f has a unique solution $u \in H^2(\mathbb{R})$.
- (d*) [5p] Give an example of a function $f \in L^2(\mathbb{R}^2)$ such that the equation

$$-\frac{\partial^2 u}{\partial x_1^2} + u = f,$$

does not have a solution in $H^2(\mathbb{R}^2)$.

Solution:

(a) $H^s(\mathbb{R}^d)$ is the set of "all" functions f such that $\int_{\mathbb{R}^d} (1+|t|^2)^s |\hat{f}(t)| \, ds < \infty$.

(To be precise, $H^s(\mathbb{R}^d)$ is the Fourier image of the set of all measurable complex-valued functions f on \mathbb{R}^d such that $\int_{\mathbb{R}^d} (1+|t|^2)^s |f(t)| \, ds < \infty$.)

- (b) By Sobolev's inequality: For s > d/2.
- (c) In the Fourier domain, the equation reads

$$(t^2 + 1)\,\hat{u}(t) = \hat{f}(t).$$

We immediately see that the function

$$u(x) = \left[\mathcal{F}^* \frac{\hat{f}(t)}{1+t^2}\right](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ixt} \frac{\hat{f}(t)}{1+t^2} dt$$

solves the equation. We find that

$$||u||_{H^2}^2 = \int_{-\infty}^{\infty} (1+t^2)^2 |\hat{u}(t)|^2 dt = \int_{-\infty}^{\infty} (1+t^2)^2 \frac{|\hat{f}(t)|^2}{(1+t^2)^2} dt = \int_{-\infty}^{\infty} |\hat{f}(t)|^2 dt = ||f||_{L^2}^2$$

so $u \in H^2$. To show uniqueness, simply note that if u and v both solve the equation, then

$$(t^2+1)\hat{u} = \hat{f}$$
 and $(t^2+1)\hat{v} = \hat{f} \Rightarrow (t^2+1)(\hat{u}-\hat{v}) = 0 \Rightarrow \hat{u} = \hat{v}, \Rightarrow u = v.$

(d) The problem here is that while the equation is smoothing in the x_1 -direction, it does precisely nothing in the x_2 -direction. There are many ways of constructing counter-examples, but we could for instance set

$$\hat{f}(t_1, t_2) = \begin{cases} \frac{1}{(1+t_2)^{1/2}} & |t_1| \le 1, \\ 0 & |t_1| > 1. \end{cases}$$

Then

$$||f||_{L^{2}}^{2} = ||\hat{f}||_{L^{2}}^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{f}(t)|^{2} dt_{1} dt_{2} = \int_{-\infty}^{\infty} \int_{-1}^{1} \frac{1}{1+t_{2}^{2}} dt_{1} dt_{2} = 2 \int_{-\infty}^{\infty} \frac{1}{1+t_{2}^{2}} dt_{2} = 2\pi$$

so $f \in L^2(\mathbb{R}^2)$. The solution u of the given equation satisfies

$$\hat{u}(t_1, t_2) = \begin{cases} \frac{1}{1+t_1^2} \frac{1}{(1+t_2)^{1/2}} & |t_1| \le 1, \\ 0 & |t_1| > 1. \end{cases}$$

We see that $u \notin H^2(\mathbb{R}^2)$ since

$$\begin{aligned} ||u||_{H^2}^2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (1+|t|^2)^2 \, |\hat{u}(t)|^2 \, dt_1 \, dt_2 = \int_{-\infty}^{\infty} \int_{-1}^{1} \frac{(1+t_1^2+t_2^2)^2}{(1+t_1^2)^2 \, (1+t_2^2)} \, dt_1 \, dt_2 \\ &\geq \int_{-\infty}^{\infty} \int_{-1}^{1} \frac{(1+0+t_2^2)^2}{(1+1)^2 \, (1+t_2^2)} \, dt_1 \, dt_2 = \frac{1}{2} \int_{-\infty}^{\infty} (1+t_2^2) \, dt_2 = \infty. \end{aligned}$$

Problem 5: (12 points) Let \mathbb{N} denote the set of positive integers, and let \mathcal{A} denote the collection of all subsets of \mathbb{N} . Let $(\alpha_n)_{n=1}^{\infty}$ be a sequence of real numbers, and define a function

$$\mu: \ \mathcal{A} \to \mathbb{R}: \ \Omega \mapsto \sum_{n \in \Omega} \alpha_n.$$

Under what conditions on the numbers (α_n) is μ a measure? Is it ever a finite measure? Is it ever a σ -finite measure? No motivation required.

Solution:

 μ is a measure if and only if all α_n are non-negative. 1

 μ is a finite if and only if $\sum_{n=1}^{\infty} \alpha_n$ is finite.

 μ is always σ -finite since $\mathbb{N} = \bigcup_{n=1}^{\infty} \{n\}$ and $\mu(\{n\}) = \alpha_n < \infty$.

¹So called *signed measures* (and even complex valued measures) do exist but are not covered in this class.