Applied Analysis (APPM 5450): Midterm 3

8.30am – 9.50pm, April 19, 2010. Closed books.

Note: You may want to save problems marked with a star for last.

Problem 1: (15 points) Let $g, h \in L^2(\mathbb{R})$ and set f = g * h. Prove that $||f||_u \leq ||g||_{L^2} ||h||_{L^2}$ (where $||f||_u = \sup_x |f(x)|$). Is it necessarily the case that $f \in C_0(\mathbb{R})$? Motivate your answer briefly.

Problem 2: (26 points) In this problem, $S = S(\mathbb{R})$ is the Schwartz space over the real line, *a* is a <u>non-zero</u> real number, and \mathcal{F} is the Fourier transform.

(a) [6p] Define the operator $D_a: \mathcal{S} \to \mathcal{S}$ via $[D_a \varphi](x) = \varphi(a x)$. Show that for some $b, c \in \mathbb{R}$ (EQ1) $\mathcal{F} D_a \varphi = b D_c \mathcal{F} \varphi.$

(b) [6p] State the appropriate definition of the operator $D_a: S^* \to S^*$, and derive for $T \in S^*$ a formula for $\mathcal{F}D_aT$ analogous to (EQ1). Be careful in motivating your work!

(c) [6p] Fix a function $h \in C_{\rm b}(\mathbb{R})$ (*i.e.* h is bounded and continuous), and set $f_n = D_{1/n}h$ for $n = 1, 2, 3, \ldots$ Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges in \mathcal{S}^* and give the limit.

(d) [6p] With f_n as in (c), set $\hat{f}_n = \mathcal{F}f_n$. Does the sequence $(\hat{f}_n)_{n=1}^{\infty}$ converge in \mathcal{S}^* ? If so, to what?

(e^{*}) [2p] Give an example of a distribution $h \in S^*$ such that $(D_{1/n}h)_{n=1}^{\infty}$ does <u>not</u> converge in S^* .

Problem 3: (25 points)

(a) [5p] For d a positive integer, and s a real number, define the Sobolev space $H^{s}(\mathbb{R}^{d})$.

(b) [5p] For which s, if any, is it necessarily the case that all functions in $H^{s}(\mathbb{R}^{d})$ are continuous?

(c) [10p] Let $f \in L^2(\mathbb{R})$. Show that the equation -u'' + u = f has a unique solution $u \in H^2(\mathbb{R})$.

(d*) [5p] Give an example of a function $f \in L^2(\mathbb{R}^2)$ such that the equation

$$-\frac{\partial^2 u}{\partial x_1^2} + u = f,$$

does not have a solution in $H^2(\mathbb{R}^2)$.

Problem 4: (12 points)

(a) [4p] State the definition of a *measure*.

(b) [4p] Let (X, \mathcal{T}) be a topological space. State the definition of the Borel σ -algebra associated with (X, \mathcal{T}) .

(c) [4p] State the definition of the essential supremum.

Problem 5: (12 points) Let \mathbb{N} denote the set of positive integers, and let \mathcal{A} denote the collection of all subsets of \mathbb{N} . Let $(\alpha_n)_{n=1}^{\infty}$ be a sequence of real numbers, and define a function

$$\mu: \mathcal{A} \to \mathbb{R}: \ \Omega \mapsto \sum_{n \in \Omega} \alpha_n.$$

Under what conditions on the numbers (α_n) is μ a measure? Is it ever a finite measure? Is it ever a σ -finite measure? No motivation required.