Applied Analysis (APPM 5450): Midterm 3

8.30am - 9.50 pm , April 19, 2010. Closed books.

Note: You may want to save problems marked with a star for last.
Problem 1: (15 points) Let $g, h \in L^{2}(\mathbb{R})$ and set $f=g * h$. Prove that $\|f\|_{\mathrm{u}} \leq\|g\|_{L^{2}}\|h\|_{L^{2}}$ (where $\left.\|f\|_{\mathrm{u}}=\sup _{x}|f(x)|\right)$. Is it necessarily the case that $f \in C_{0}(\mathbb{R})$? Motivate your answer briefly.

Problem 2: (26 points) In this problem, $\mathcal{S}=\mathcal{S}(\mathbb{R})$ is the Schwartz space over the real line, a is a non-zero real number, and \mathcal{F} is the Fourier transform.
(a) $[6 \mathrm{p}]$ Define the operator $D_{a}: \mathcal{S} \rightarrow \mathcal{S}$ via $\left[D_{a} \varphi\right](x)=\varphi(a x)$. Show that for some $b, c \in \mathbb{R}$ (EQ1) $\mathcal{F} D_{a} \varphi=b D_{c} \mathcal{F} \varphi$.
(b) [6p] State the appropriate definition of the operator $D_{a}: \mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$, and derive for $T \in \mathcal{S}^{*}$ a formula for $\mathcal{F} D_{a} T$ analogous to (EQ1). Be careful in motivating your work!
(c) $[6 \mathrm{p}]$ Fix a function $h \in C_{\mathrm{b}}(\mathbb{R})$ (i.e. h is bounded and continuous), and set $f_{n}=D_{1 / n} h$ for $n=1,2,3, \ldots$. Prove that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges in \mathcal{S}^{*} and give the limit.
(d) $[6 \mathrm{p}]$ With f_{n} as in (c), set $\hat{f}_{n}=\mathcal{F} f_{n}$. Does the sequence $\left(\hat{f}_{n}\right)_{n=1}^{\infty}$ converge in \mathcal{S}^{*} ? If so, to what? (e^{*}) $[2 \mathrm{p}]$ Give an example of a distribution $h \in \mathcal{S}^{*}$ such that $\left(D_{1 / n} h\right)_{n=1}^{\infty}$ does not converge in \mathcal{S}^{*}.

Problem 3: (25 points)
(a) [5p] For d a positive integer, and s a real number, define the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$.
(b) [5p] For which s, if any, is it necessarily the case that all functions in $H^{s}\left(\mathbb{R}^{d}\right)$ are continuous?
(c) $[10 \mathrm{p}]$ Let $f \in L^{2}(\mathbb{R})$. Show that the equation $-u^{\prime \prime}+u=f$ has a unique solution $u \in H^{2}(\mathbb{R})$.
(d*) [5p] Give an example of a function $f \in L^{2}\left(\mathbb{R}^{2}\right)$ such that the equation

$$
-\frac{\partial^{2} u}{\partial x_{1}^{2}}+u=f
$$

does not have a solution in $H^{2}\left(\mathbb{R}^{2}\right)$.
Problem 4: (12 points)
(a) $[4 \mathrm{p}]$ State the definition of a measure.
(b) [4p] Let (X, \mathcal{T}) be a topological space. State the definition of the Borel σ-algebra associated with (X, \mathcal{T}).
(c) [4p] State the definition of the essential supremum.

Problem 5: (12 points) Let \mathbb{N} denote the set of positive integers, and let \mathcal{A} denote the collection of all subsets of \mathbb{N}. Let $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers, and define a function

$$
\mu: \mathcal{A} \rightarrow \mathbb{R}: \Omega \mapsto \sum_{n \in \Omega} \alpha_{n} .
$$

Under what conditions on the numbers $\left(\alpha_{n}\right)$ is μ a measure? Is it ever a finite measure? Is it ever a σ-finite measure? No motivation required.

