Applied Analysis (APPM 5450): Midterm 2 - solutions

8.30am - 9.50am, March 15, 2010. Closed books.

Problem 1: (30 points) Let A be a bounded linear operator on a Hilbert space H.
(a) (10 points) Suppose that $\lambda \in \sigma_{\mathrm{p}}(A)$. Prove that $\bar{\lambda} \in \sigma\left(A^{*}\right)$. Can you tell what part of the spectrum $\bar{\lambda}$ belongs to?
(b) (10 points) Suppose that A is self-adjoint, and that M is an invariant subspace of A. Prove that M^{\perp} is also an invariant subspace of A.
(c) (10 points) Suppose that A is compact and self-adjoint. Which statements are necessarily true?
(i) $\sigma(A) \subseteq \mathbb{R}$.
(iv) $\sigma(A) \subseteq\left(\sigma_{\mathrm{p}}(A) \cup\{0\}\right)$.
(ii) $\sigma_{\mathrm{r}}(A)=\emptyset$.
(v) $\sigma(A)$ contains infinitely many points.
(iii) $\sigma_{\mathrm{c}}(A)=\emptyset$.
(vi) If $\lambda \neq 0$, then $\operatorname{dim}(\operatorname{ker}(A-\lambda I))<\infty$.

No motivation required.

Solution:

(a) Since $\lambda \in \sigma_{\mathrm{p}}(A)$, we know that $A-\lambda I$ has a non-trivial null-space. It follows that $A^{*}-\bar{\lambda} I$ cannot be onto since

$$
\begin{equation*}
\overline{\operatorname{ran}\left(A^{*}-\bar{\lambda} I\right)}=(\operatorname{ker}(A-\lambda I))^{\perp} \tag{1}
\end{equation*}
$$

Therefore $A^{*}-\bar{\lambda} I$ cannot be invertible, and so $\bar{\lambda} \in \sigma\left(A^{*}\right)$. As for the part of the spectrum, (1) rules out the possibility that $\operatorname{ran}\left(A^{*}-\bar{\lambda} I\right)$ is dense, so $\bar{\lambda} \notin \sigma_{\mathrm{c}}\left(A^{*}\right)$. Answer: $\bar{\lambda} \in \sigma_{\mathrm{p}}\left(A^{*}\right)$ or $\bar{\lambda} \in \sigma_{\mathrm{r}}\left(A^{*}\right)$.
(b) Fix $x \in M^{\perp}$. We need to prove that $A x \in M^{\perp}$. For any $y \in M$, we have

$$
(y, A x)=(A y, x)=0
$$

where the second equality follows from the fact that $A y \in M$ (since M is invariant) and $x \in M^{\perp}$. Since $(y, A x)=0$ for all $y \in M$, it follows that $A x \in M^{\perp}$.
(c) (i), (ii), (iv), and (vi) are true.

Problem 2: (20 points)
(a) (6 points) Define what is meant by the derivative of a distribution $T \in \mathcal{S}^{*}(\mathbb{R})$.
(b) (14 points) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=|x|$. Calculate the distributional derivatives f^{\prime} and $f^{\prime \prime}$. Please motivate carefully.

Solution:

(a) The derivative T^{\prime} is the map $T^{\prime}: \mathcal{S} \rightarrow \mathbb{C}: \varphi \mapsto-T\left(\varphi^{\prime}\right)$.
(b) Let $\varphi \in \mathcal{S}$. Then

$$
\begin{aligned}
\left\langle f^{\prime}, \varphi\right\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=-\int_{-\infty}^{0}(-x) \varphi^{\prime}(x) & d x-\int_{0}^{\infty} x \varphi^{\prime}(x) d x \\
& =[x \varphi(x)]_{-\infty}^{0}-\int_{-\infty}^{0} \varphi(x) d x-[x \varphi(x)]_{0}^{\infty}+\int_{-\infty}^{0} \varphi(x) d x .
\end{aligned}
$$

Now observe that $[x \varphi(x)]_{-\infty}^{0}=0 \cdot \varphi(0)-\lim _{t \rightarrow \infty} t \varphi(t)=-\lim _{t \rightarrow \infty} t \varphi(t)$. The limit is zero since φ decays faster than any polynomial. Analogously, $[x \varphi(x)]_{0}^{\infty}=0$. It follows that

$$
\left\langle f^{\prime}, \varphi\right\rangle=-\int_{-\infty}^{0} \varphi(x) d x+\int_{-\infty}^{0} \varphi(x) d x=\langle g, \varphi\rangle,
$$

provided that we define the function g via

$$
g(x)=\left\{\begin{array}{rl}
-1 & x \leq 0 \\
1 & x>0
\end{array}\right.
$$

So $f^{\prime}=g$. (Note that the value of $g(0)$ is irrelevant, any finite value can be assigned.) Furthermore,

$$
\begin{aligned}
\left\langle f^{\prime \prime}, \varphi\right\rangle=\left\langle g^{\prime}, \varphi\right\rangle=-\left\langle g, \varphi^{\prime}\right\rangle=\int_{-\infty}^{0} & \varphi^{\prime}(x) d x-\int_{0}^{\infty} \varphi^{\prime}(x) d x \\
& =[\varphi(x)]_{-\infty}^{0}-[\varphi(x)]_{0}^{\infty}=\varphi(0)-(-\varphi(0))=2 \varphi(0)=\langle 2 \delta, \varphi\rangle,
\end{aligned}
$$

so $f^{\prime \prime}=2 \delta$.

Problem 3: (20 points) Let $\mathcal{S}=\mathcal{S}(\mathbb{R})$ denote the Schwartz space over \mathbb{R}.
(a) (6 points) Define what it means for a sequence to converge in \mathcal{S}. If your definition relies on any norms, semi-norms, metrics, bases, etc, then state the definition of these.
(b) (8 points) Let α be a positive integer. Prove that $\left(\frac{d}{d x}\right)^{\alpha}: \mathcal{S} \rightarrow \mathcal{S}$ is a continuous map.
(c) (6 points) Set $\varphi_{n}(x)=e^{-(x-n)^{2}}$. Does the sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge in \mathcal{S} ? If so, to what?

Solution:

(a) For $k, \alpha \in \mathbb{Z}_{+}$, set

$$
\|\varphi\|_{\alpha, k}=\sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{k / 2}\left|\varphi^{(\alpha)}(x)\right|,
$$

where $\varphi^{(\alpha)}$ denotes the α derivative of φ. Then

$$
\varphi_{n} \rightarrow \varphi \text { in } \mathcal{S} \quad \Leftrightarrow \quad \text { For every } \alpha, k \text { we have } \lim _{n \rightarrow \infty}\left\|\varphi_{n}-\varphi\right\|_{\alpha, k}=0
$$

(b) Fix α. Suppose $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}. This is to say that

$$
\begin{equation*}
\text { For every } \alpha, k \text { we have } \lim _{n \rightarrow \infty}\left\|\varphi_{n}-\varphi\right\|_{\alpha, k}=0 \tag{2}
\end{equation*}
$$

We need to prove that $\varphi_{n}^{(\alpha)} \rightarrow \varphi^{(\alpha)}$ in \mathcal{S}. Fix k, β. Then

$$
\left\|\varphi_{n}^{(\alpha)}-\varphi^{(\alpha)}\right\|_{k, \beta}=\sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{k / 2}\left|\varphi_{n}^{(\alpha+\beta)}(x)-\varphi^{(\alpha+\beta)}(x)\right|=\left\|\varphi_{n}-\varphi\right\|_{k, \alpha+\beta} .
$$

By (2) we find that

$$
\lim _{n \rightarrow \infty}\left\|\varphi_{n}^{(\alpha)}-\varphi^{(\alpha)}\right\|_{k, \beta}=0
$$

Since k, β were arbitrary, this proves that $\varphi_{n}^{(\alpha)} \rightarrow \varphi^{(\alpha)}$ in \mathcal{S}.
(c) Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converges pointwise to the zero-function, the only possible limit would be the zero function. But for any n, we have

$$
\left\|\varphi_{n}-0\right\|_{0,0}=\sup _{x}\left|\varphi_{n}(x)\right|=1
$$

It follows that $\left(\varphi_{n}\right)_{n=1}^{\infty}$ cannot converge.

Problem 4: (30 points) Let H be a Hilbert space with an orthonormal basis $\left(\varphi_{n}\right)_{n=1}^{\infty}$. Consider the operators

$$
A_{N} x=\sum_{n=1}^{N} \frac{1}{n}\left(\varphi_{n}, x\right) \varphi_{n}, \quad \text { and } \quad B_{N} x=\exp \left(i A_{N}\right)=\sum_{n=1}^{N} e^{i / n}\left(\varphi_{n}, x\right) \varphi_{n}
$$

The sequences $\left(A_{N}\right)_{N=1}^{\infty}$ and $\left(B_{N}\right)_{N=1}^{\infty}$ have the strong limits A and B, respectively.
(a) (10 points) Put a check-mark in all the boxes that are correct (no motivation required):

	Compact	Self-adjoint	Skew-adjoint	Normal	Unitary	One-to-one	Onto
A_{N}	T	T		T			
A	T	T		T			
B_{N}	T			T			
B				T	T	T	T

(b) (10 points) Do either of the sequences $\left(A_{N}\right)_{N=1}^{\infty}$ or $\left(B_{N}\right)_{N=1}^{\infty}$ converge in norm? Motivate your answers.
(c) (10 points) Specify the spectra of A and B and identify their different parts (i.e. specify σ_{p}, σ_{c}, and σ_{r}). No motivation required.

Solution:

(b) $\left(A_{N}\right)_{N=1}^{\infty}$ does converge in norm: Let $x \in H$. Then

$$
\begin{aligned}
\left.\left\|\left(A-A_{N}\right) x\right\|^{2}=\| \sum_{n=N+1}^{\infty} \frac{1}{n}\left(\varphi_{n} x\right) \varphi_{n}\right) \|^{2}=\{\text { Pythagoras }\} & =\sum_{n=N+1}^{\infty}\left|\frac{1}{n}\left(\varphi_{n} x\right)\right|^{2} \\
& \leq \frac{1}{(N+1)^{2}} \sum_{n=N+1}^{\infty}\left|\left(\varphi_{n} x\right)\right|^{2} \leq \frac{1}{(N+1)^{2}}\|x\|^{2}
\end{aligned}
$$

It follows that $\left\|A-A_{N}\right\| \leq 1 /(N+1)$ so $A_{N} \rightarrow A$ in norm.
$\left(B_{N}\right)_{N=1}^{\infty}$ does not converge in norm: We have

$$
\left\|B-B_{N}\right\| \geq\left\|\left(B-B_{N}\right) \varphi_{N+1}\right\|=\left\|e^{i /(N+1)} \varphi_{N+1}\right\|=\left|e^{i /(N+1)}\right|=1
$$

(c)

$$
\begin{array}{lll}
\sigma_{\mathrm{p}}(A)=\{1 / n\}_{n=1}^{\infty}, & \sigma_{\mathrm{c}}(A)=\{0\}, & \sigma_{\mathrm{r}}(A)=\emptyset \\
\sigma_{\mathrm{p}}(A)=\left\{e^{i / n}\right\}_{n=1}^{\infty}, & \sigma_{\mathrm{c}}(A)=\{1\}, & \sigma_{\mathrm{r}}(A)=\emptyset
\end{array}
$$

