
Applied Analysis (APPM 5450): Midterm 2 — solutions
8.30am – 9.50am, March 15, 2010. Closed books.

Problem 1: (30 points) Let A be a bounded linear operator on a Hilbert space H.

(a) (10 points) Suppose that λ ∈ σp(A). Prove that λ̄ ∈ σ(A∗). Can you tell what part of the
spectrum λ̄ belongs to?

(b) (10 points) Suppose that A is self-adjoint, and that M is an invariant subspace of A. Prove
that M⊥ is also an invariant subspace of A.

(c) (10 points) Suppose that A is compact and self-adjoint. Which statements are necessarily true?
(i) σ(A) ⊆ R.
(ii) σr(A) = ∅.
(iii) σc(A) = ∅.

(iv) σ(A) ⊆ (
σp(A) ∪ {0}).

(v) σ(A) contains infinitely many points.
(vi) If λ 6= 0, then dim(ker(A− λ I)) < ∞.

No motivation required.

Solution:

(a) Since λ ∈ σp(A), we know that A − λI has a non-trivial null-space. It follows that A∗ − λ̄I
cannot be onto since

(1) ran(A∗ − λ̄I) =
(
ker(A− λI)

)⊥
.

Therefore A∗−λ̄I cannot be invertible, and so λ̄ ∈ σ(A∗). As for the part of the spectrum, (1) rules
out the possibility that ran(A∗− λ̄I) is dense, so λ̄ /∈ σc(A∗). Answer: λ̄ ∈ σp(A∗) or λ̄ ∈ σr(A∗).

(b) Fix x ∈ M⊥. We need to prove that A x ∈ M⊥. For any y ∈ M , we have

(y, Ax) = (Ay, x) = 0

where the second equality follows from the fact that Ay ∈ M (since M is invariant) and x ∈ M⊥.
Since (y, Ax) = 0 for all y ∈ M , it follows that Ax ∈ M⊥.

(c) (i), (ii), (iv), and (vi) are true.



Problem 2: (20 points)

(a) (6 points) Define what is meant by the derivative of a distribution T ∈ S∗(R).

(b) (14 points) Define f ∈ S∗(R) via f(x) = |x|. Calculate the distributional derivatives f ′ and
f ′′. Please motivate carefully.

Solution:

(a) The derivative T ′ is the map T ′ : S → C : ϕ 7→ −T (ϕ′).

(b) Let ϕ ∈ S. Then

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ 0

−∞
(−x)ϕ′(x) dx−

∫ ∞

0
xϕ′(x) dx

= [xϕ(x)]0−∞ −
∫ 0

−∞
ϕ(x) dx− [xϕ(x)]∞0 +

∫ 0

−∞
ϕ(x) dx.

Now observe that [xϕ(x)]0−∞ = 0 · ϕ(0)− limt→∞ t ϕ(t) = − limt→∞ t ϕ(t). The limit is zero since
ϕ decays faster than any polynomial. Analogously, [xϕ(x)]∞0 = 0. It follows that

〈f ′, ϕ〉 = −
∫ 0

−∞
ϕ(x) dx +

∫ 0

−∞
ϕ(x) dx = 〈g, ϕ〉,

provided that we define the function g via

g(x) =
{ −1 x ≤ 0

1 x > 0.

So f ′ = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) Furthermore,

〈f ′′, ϕ〉 = 〈g′, ϕ〉 = −〈g, ϕ′〉 =
∫ 0

−∞
ϕ′(x) dx−

∫ ∞

0
ϕ′(x) dx

= [ϕ(x)]0−∞ − [ϕ(x)]∞0 = ϕ(0)− (−ϕ(0)) = 2ϕ(0) = 〈2δ, ϕ〉,
so f ′′ = 2δ.



Problem 3: (20 points) Let S = S(R) denote the Schwartz space over R.

(a) (6 points) Define what it means for a sequence to converge in S. If your definition relies on
any norms, semi-norms, metrics, bases, etc, then state the definition of these.

(b) (8 points) Let α be a positive integer. Prove that
(

d

dx

)α

: S → S is a continuous map.

(c) (6 points) Set ϕn(x) = e−(x−n)2 . Does the sequence (ϕn)∞n=1 converge in S? If so, to what?

Solution:

(a) For k, α ∈ Z+, set
||ϕ||α,k = sup

x∈R
(1 + |x|2)k/2|ϕ(α)(x)|,

where ϕ(α) denotes the α derivative of ϕ. Then

ϕn → ϕ in S ⇔ For every α, k we have lim
n→∞ ||ϕn − ϕ||α,k = 0.

(b) Fix α. Suppose ϕn → ϕ in S. This is to say that

(2) For every α, k we have lim
n→∞ ||ϕn − ϕ||α,k = 0.

We need to prove that ϕ
(α)
n → ϕ(α) in S. Fix k, β. Then

||ϕ(α)
n − ϕ(α)||k,β = sup

x∈R
(1 + |x|2)k/2|ϕ(α+β)

n (x)− ϕ(α+β)(x)| = ||ϕn − ϕ||k,α+β.

By (2) we find that
lim

n→∞ ||ϕ
(α)
n − ϕ(α)||k,β = 0.

Since k, β were arbitrary, this proves that ϕ
(α)
n → ϕ(α) in S.

(c) Since (ϕn)∞n=1 converges pointwise to the zero-function, the only possible limit would be the
zero function. But for any n, we have

||ϕn − 0||0,0 = sup
x
|ϕn(x)| = 1.

It follows that (ϕn)∞n=1 cannot converge.



Problem 4: (30 points) Let H be a Hilbert space with an orthonormal basis (ϕn)∞n=1. Consider
the operators

AN x =
N∑

n=1

1
n

(ϕn, x) ϕn, and BN x = exp(iAN ) =
N∑

n=1

ei/n(ϕn, x) ϕn.

The sequences (AN )∞N=1 and (BN )∞N=1 have the strong limits A and B, respectively.

(a) (10 points) Put a check-mark in all the boxes that are correct (no motivation required):

Compact Self-adjoint Skew-adjoint Normal Unitary One-to-one Onto
AN T T T
A T T T
BN T T
B T T T T

(b) (10 points) Do either of the sequences (AN )∞N=1 or (BN )∞N=1 converge in norm? Motivate your
answers.

(c) (10 points) Specify the spectra of A and B and identify their different parts (i.e. specify σp,
σc, and σr). No motivation required.

Solution:

(b) (AN )∞N=1 does converge in norm: Let x ∈ H. Then

||(A−AN )x||2 =
∣∣∣
∣∣∣

∞∑

n=N+1

1
n

(ϕn x) ϕn)
∣∣∣
∣∣∣
2

= {Pythagoras} =
∞∑

n=N+1

∣∣∣∣
1
n

(ϕn x)
∣∣∣∣
2

≤ 1
(N + 1)2

∞∑

n=N+1

|(ϕn x)|2 ≤ 1
(N + 1)2

||x||2.

It follows that ||A−AN || ≤ 1/(N + 1) so AN → A in norm.

(BN )∞N=1 does not converge in norm: We have

||B −BN || ≥ ||(B −BN ) ϕN+1|| = ||ei/(N+1)ϕN+1|| = |ei/(N+1)| = 1.

(c)
σp(A) = {1/n}∞n=1, σc(A) = {0}, σr(A) = ∅.
σp(A) = {ei/n}∞n=1, σc(A) = {1}, σr(A) = ∅.


