Applied Analysis (APPM 5450): Midterm 2

8.30am - 9.50am, March 15, 2010. Closed books.

Problem 1: (30 points) Let A be a bounded linear operator on a Hilbert space H.
(a) (10 points) Suppose that $\lambda \in \sigma_{\mathrm{p}}(A)$. Prove that $\bar{\lambda} \in \sigma\left(A^{*}\right)$. Can you tell what part of the spectrum $\bar{\lambda}$ belongs to?
(b) (10 points) Suppose that A is self-adjoint, and that M is an invariant subspace of A. Prove that M^{\perp} is also an invariant subspace of A.
(c) (10 points) Suppose that A is compact and self-adjoint. Which statements are necessarily true?
(i) $\sigma(A) \subseteq \mathbb{R}$.
(iv) $\sigma(A) \subseteq\left(\sigma_{\mathrm{p}}(A) \cup\{0\}\right)$.
(ii) $\sigma_{\mathrm{r}}(A)=\emptyset$.
(v) $\sigma(A)$ contains infinitely many points.
(iii) $\sigma_{\mathrm{c}}(A)=\emptyset$.
(vi) If $\lambda \neq 0$, then $\operatorname{dim}(\operatorname{ker}(A-\lambda I))<\infty$.

No motivation required.
Problem 2: (20 points)
(a) (6 points) Define what is meant by the derivative of a distribution $T \in \mathcal{S}^{*}(\mathbb{R})$.
(b) (14 points) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=|x|$. Calculate the distributional derivatives f^{\prime} and $f^{\prime \prime}$. Please motivate carefully.

Problem 3: (20 points) Let $\mathcal{S}=\mathcal{S}(\mathbb{R})$ denote the Schwartz space over \mathbb{R}.
(a) (6 points) Define what it means for a sequence to converge in \mathcal{S}. If your definition relies on any norms, semi-norms, metrics, bases, etc, then state the definition of these.
(b) (8 points) Let α be a positive integer. Prove that $\left(\frac{d}{d x}\right)^{\alpha}: \mathcal{S} \rightarrow \mathcal{S}$ is a continuous map.
(c) (6 points) Set $\varphi_{n}(x)=e^{-(x-n)^{2}}$. Does the sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge in \mathcal{S} ? If so, to what?

Problem 4: (30 points) Let H be a Hilbert space with an orthonormal basis $\left(\varphi_{n}\right)_{n=1}^{\infty}$. Consider the operators

$$
A_{N} x=\sum_{n=1}^{N} \frac{1}{n}\left(\varphi_{n}, x\right) \varphi_{n}, \quad \text { and } \quad B_{N} x=\exp \left(i A_{N}\right)=\sum_{n=1}^{N} e^{i / n}\left(\varphi_{n}, x\right) \varphi_{n}
$$

The sequences $\left(A_{N}\right)_{N=1}^{\infty}$ and $\left(B_{N}\right)_{N=1}^{\infty}$ have the strong limits A and B, respectively.
(a) (10 points) Put a check-mark in all the boxes that are correct (no motivation required):

	Compact	Self-adjoint	Skew-adjoint	Normal	Unitary	One-to-one	Onto
A_{N}							
A							
B_{N}							
B							

(b) (10 points) Do either of the sequences $\left(A_{N}\right)_{N=1}^{\infty}$ or $\left(B_{N}\right)_{N=1}^{\infty}$ converge in norm? Motivate your answers.
(c) (10 points) Specify the spectra of A and B and identify their different parts (i.e. specify σ_{p}, σ_{c}, and σ_{r}). No motivation required.

Note: Please staple this page to the front of your exam!

