Applied Analysis (APPM 5450): Midterm 2

8.30am – 9.50am, March 15, 2010. Closed books.

Problem 1: (30 points) Let A be a bounded linear operator on a Hilbert space H.

(a) (10 points) Suppose that $\lambda \in \sigma_p(A)$. Prove that $\bar{\lambda} \in \sigma(A^*)$. Can you tell what part of the spectrum $\bar{\lambda}$ belongs to?

(b) (10 points) Suppose that A is self-adjoint, and that M is an invariant subspace of A. Prove that M^{\perp} is also an invariant subspace of A.

(c) (10 points) Suppose that A is compact and self-adjoint. Which statements are necessarily true? (i) $\sigma(A) \subseteq \mathbb{R}$. (ii) $\sigma_{r}(A) = \emptyset$. (iii) $\sigma_{c}(A) = \emptyset$. No motivation required. (iv) $\sigma(A) \subseteq (\sigma_{p}(A) \cup \{0\})$. (v) $\sigma(A)$ contains infinitely many points. (vi) If $\lambda \neq 0$, then dim(ker $(A - \lambda I)$) $< \infty$.

Problem 2: (20 points)

(a) (6 points) Define what is meant by the *derivative* of a distribution $T \in \mathcal{S}^*(\mathbb{R})$.

(b) (14 points) Define $f \in S^*(\mathbb{R})$ via f(x) = |x|. Calculate the distributional derivatives f' and f''. Please motivate carefully.

Problem 3: (20 points) Let $S = S(\mathbb{R})$ denote the Schwartz space over \mathbb{R} .

(a) (6 points) Define what it means for a sequence to converge in S. If your definition relies on any norms, semi-norms, metrics, bases, *etc*, then state the definition of these.

(b) (8 points) Let α be a positive integer. Prove that $\left(\frac{d}{dx}\right)^{\alpha}$: $S \to S$ is a continuous map.

(c) (6 points) Set $\varphi_n(x) = e^{-(x-n)^2}$. Does the sequence $(\varphi_n)_{n=1}^{\infty}$ converge in \mathcal{S} ? If so, to what?

Problem 4: (30 points) Let *H* be a Hilbert space with an orthonormal basis $(\varphi_n)_{n=1}^{\infty}$. Consider the operators

$$A_N x = \sum_{n=1}^N \frac{1}{n} (\varphi_n, x) \varphi_n, \quad \text{and} \quad B_N x = \exp(iA_N) = \sum_{n=1}^N e^{i/n} (\varphi_n, x) \varphi_n.$$

The sequences $(A_N)_{N=1}^{\infty}$ and $(B_N)_{N=1}^{\infty}$ have the strong limits A and B, respectively.

(a) (10 points) Put a check-mark in all the boxes that are correct (no motivation required):

	Compact	Self-adjoint	Skew-adjoint	Normal	Unitary	One-to-one	Onto
A_N							
A							
B_N							
В							

(b) (10 points) Do either of the sequences $(A_N)_{N=1}^{\infty}$ or $(B_N)_{N=1}^{\infty}$ converge in norm? Motivate your answers.

(c) (10 points) Specify the spectra of A and B and identify their different parts (*i.e.* specify σ_p , σ_c , and σ_r). No motivation required.

Note: Please staple this page to the front of your exam!