Applied Analysis (APPM 5450): Midterm 1

8.30am - 9.50am, Feb. 15, 2010. Closed books.

Problem 1: (30p total, 5p per question) Let H denote a Hilbert space with an ON-basis $\left(e_{n}\right)_{n=1}^{\infty}$. Which of the following statements are necessarily true? No motivation required.
(a) $e_{n} \rightharpoonup 0$.
(b) Suppose that $x, x_{n} \in H$ and $\lim _{n \rightarrow \infty}\left(x_{n}, e_{m}\right)=\left(x, e_{m}\right)$ for every m. Then $x_{n} \rightharpoonup x$.
(c) Suppose that $P \in \mathcal{B}(H)$ is such that $P^{2}=P$ and $P \neq 0$. Then $\|P\|=1$ if and only if $P^{*}=P$.
(d) Suppose $A \in \mathcal{B}(H)$ is self-adjoint. Then $C=\exp (i A)$ is unitary.
(e) Suppose that $A, B \in \mathcal{B}(H)$, that A is coercive, and that B is positive. Then $A+B$ is coercive.
(f) Suppose that $A, B \in \mathcal{B}(H)$, and that A is self-adjoint. Then $E=B A B^{*}$ is self-adjoint.

Solution (with unrequired motivations):
(a) True.
(b) False. You must also know that sup $\left\|x_{n}\right\|<\infty$.
(c) True. P is a projection, and for a non-zero projection, we know that:

$$
\|P\|=1 \quad \Leftrightarrow \quad P=P^{*} \quad \Leftrightarrow \quad \operatorname{ran}(P)=\operatorname{ker}(P)^{\perp} .
$$

(d) True.
(e) True. Suppose $x \in H$. Then there is a $c>0$ such that $(A x, x) \geq c\|x\|^{2}$. Then

$$
((A+B) x, x)=\underbrace{(A x, x)}_{\geq c\|x\|^{2}}+\underbrace{(B x, x)}_{>0} \geq c\|x\|^{2} .
$$

(f) True. $E^{*}=\left(B A B^{*}\right)^{*}=\left(B^{*}\right)^{*} A^{*} B^{*}=B A B^{*}=E$.

Problem 2: $(26 \mathrm{p})$ Let \mathbb{T} denote the one-dimensional torus, parameterized with the interval $I=(-\pi, \pi]$. Set $e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$, and let \mathcal{P} denote the set of all finite linear combinations of basis functions e_{n}, as usual. Let z denote a non-zero complex number and consider the PDE

$$
\begin{equation*}
\frac{\partial u}{\partial t}=z \frac{\partial^{2} u}{\partial x^{2}}, \tag{1}
\end{equation*}
$$

along with periodic boundary conditions, and with the initial condition

$$
\begin{equation*}
u(x, 0)=f(x), \quad x \in I . \tag{2}
\end{equation*}
$$

(a) (10p) Construct the solution operator $T(t): \mathcal{P} \rightarrow \mathcal{P}$ that maps a function $f \in \mathcal{P}$ to a function $u=T(t) f$ that solves (1) and (2).
(b) (8p) Suppose that $t>0$. For which values of z can the solution operator $T(t)$ be extended to a bounded operator on $L^{2}(\mathbb{T})$? (Recall that \mathcal{P} is dense in $L^{2}(\mathbb{T})$.)
(c) (8p) Suppose that $t>0$ and that z is such that $T(t)$ is a bounded operator on $L^{2}(\mathbb{T})$. Suppose that $f \in L^{2}(\mathbb{T})$. For which values of z can you guarantee that $T(t) f \in C^{1}(\mathbb{T})$? Can you ever guarantee that $T(t) f \in C^{2}(\mathbb{T})$?

Solution: Suppose that $f=\sum_{n=-N}^{N} c_{n} e_{n}$. Then we look for a solution of the form

$$
u(x, t)=\sum_{n=-N}^{N} \alpha_{n}(t) e_{n}(x)
$$

Inserting the Ansatz into the PDE (note that it is a finite sum, so differentiating inside the sum is unproblematic), we find (since $\partial_{x}^{2} e_{n}=-n^{2} e_{n}$) that

$$
\sum_{n=-N}^{N} \alpha_{n}^{\prime}(t) e_{n}(x)=\sum_{n=-N}^{N}-z n^{2} \alpha_{n}(t) e_{n}(x)
$$

Using that $\alpha_{n}(0)=c_{n}$, we find that the solution is

$$
\alpha_{n}(t)=c_{n} e^{-z n^{2} t} .
$$

(a) Observing that if $f=\sum c_{n} e_{n}$, then $c_{n}=\left(e_{n}, f\right)$, we see that

$$
T(t) f=\sum_{n=-\infty}^{\infty}\left(e_{n} f\right) e^{-z n^{2} t} e_{n}(x)
$$

(b) Set $w=\operatorname{Re}(z)$. Then from Parseval, we find

$$
\|T(t) f\|_{L^{2}}^{2}=\sum_{n=-\infty}^{\infty}\left|\left(e_{n} f\right) e^{-z n^{2} t}\right|^{2}=\sum_{n=-\infty}^{\infty} e^{-2 w n^{2} t}\left|\left(e_{n} f\right)\right|^{2}
$$

If $w \geq 0$, then $e^{-2 w n^{2} t} \leq 1$, so $\|T(t) f\| \leq\|f\|$ and $T(t) \in \mathcal{B}\left(L^{2}(\mathbb{T})\right)$. Conversely, if $w<0$, then

$$
\|T(t)\|_{\mathcal{B}\left(L^{2}(\mathbb{T})\right)} \geq\left\|T(t) e_{n}\right\|_{L^{2}(\mathbb{T})}=e^{-2 w n^{2} t} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Answer: $T(t) \in \mathcal{B}\left(L^{2}(\mathbb{T})\right)$ if and only if $\operatorname{Re}(z) \geq 0$.
(c) By the Sobolev embedding theorem, $H^{m}(\mathbb{T}) \subseteq C^{k}(\mathbb{T})$ whenever $m>k+1 / 2$. We have

$$
\|T(t) f\|_{H^{m}(\mathbb{T})}^{2}=\sum_{n=-\infty}^{\infty}\left(1+|n|^{2 m}\right)\left|e^{-z n^{2} t} c_{n}\right|^{2}=\sum_{n=-\infty}^{\infty}\left(1+|n|^{2 m}\right) e^{-2 w n^{2} t}\left|c_{n}\right|^{2}
$$

Set

$$
C=\sup _{n \in \mathbb{Z}}\left(1+|n|^{2 m}\right) e^{-2 w n^{2} t} .
$$

If $w>0$, then $C<\infty$, so

$$
\|T(t) f\|_{H^{m}(\mathbb{T})}^{2} \leq C \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=C\|f\|_{L^{2}(\mathbb{T})}^{2} .
$$

We see that $T(t) f \in H^{m}(\mathbb{T})$ for any m, and consequently that $T(t) f \in C^{k}(\mathbb{T})$ for any k.
Answer: $T(t) f \in C^{k}(\mathbb{T})$ for any $k \geq 0$ whenever $\operatorname{Re}(z)>0$.
Note: Our analysis is inconclusive for the case $\operatorname{Re}(z)=0$. As it happens, $T(t) f$ is not smooth in this case, but you do not need to show that for a full credit.

Problem 3: (24p) Let H denote a Hilbert space.
(a) (8p) Suppose that $U, T \in \mathcal{B}(H)$, that U is unitary, and that $\|T\|=1 / 3$. Prove that $A=U+T$ is continuously invertible.
(b) (8p) Suppose that $S \in \mathcal{B}(H)$ and that S is skew-symmetric. Prove that $\operatorname{ran}(I+S)$ is closed.
(c) (8p) For the particular case of $H=L^{2}(I)$ with $I=[-1,1]$, give an example of a unitary operator $U \in \mathcal{B}(H)$ and a skew-symmetric operator $S \in \mathcal{B}(H)$ such that $\operatorname{ran}(U+S)$ is not closed.

Solution:

(a) We observe that $A=U\left(I+U^{*} T\right)$. Now $\left\|U^{*} T x\right\|=\|T x\|$ for any x, so $\left\|U^{*} T\right\|=\|T\|=1 / 3$. This means that the factor $\left(I+U^{*} T\right)$ is Neumannable ${ }^{1}$ and

$$
(U+T)^{-1}=\left(U\left(I+U^{*} T\right)\right)^{-1}=\left(\sum_{n=0}^{\infty}\left(-U^{*} T\right)^{n}\right) U^{*}
$$

(b) Let x be any vector. Observe that $(S x, x)=\left(x, S^{*} x\right)=-(x, S x)$. Consequently,

$$
\|(I+S) x\|^{2}=\|x+S x\|^{2}=\|x\|^{2}+(S x, x)+(x, S x)+\|S x\|^{2}=\|x\|^{2}+\|S x\|^{2} \geq\|x\|^{2}
$$

Since $I+S$ is coercive, it must have closed range.
(c) Define U and S via

$$
[U f](x)=i f(x), \quad \text { and } \quad[S f](x)=i(x-1) f(x)
$$

Set $B=U+S$. We have $[B f](x)=i x f(x)$. It remains to prove that B does not have closed range. First observe that the vector $g(x)=1$ does not belong to $\operatorname{ran}(B)\left(\right.$ since $\left.1 /(i x) \notin L^{2}\right)$. Next observe that for any n, the set $H_{n}=\{f \in H: f(x)=0$ for $|x| \leq 1 / n\}$ does belong to the range, and that $\bigcup_{n=1}^{\infty} H_{n}$ is dense in H.

Problem 4: (20p) Recall that if A is an $n \times n$ matrix with complex entries, then

$$
\begin{equation*}
\operatorname{ran}(A)=\left(\operatorname{ker}\left(A^{*}\right)\right)^{\perp} \tag{3}
\end{equation*}
$$

Now suppose that H is a Hilbert space, and $A \in \mathcal{B}(H)$. State and prove a relationship analogous to (3) that A must satisfy.

Solution: Let A be a bounded operator on a Hilbert space H. Then:

$$
\begin{aligned}
x \in \operatorname{ran}(A)^{\perp} & \Leftrightarrow(A y, x)=0 \quad \forall y \in H \\
& \Leftrightarrow\left(y, A^{*} x\right)=0 \quad \forall y \in H \\
& \Leftrightarrow A^{*} x=0 \\
& \Leftrightarrow x \in \operatorname{ker}\left(A^{*}\right)
\end{aligned}
$$

The calculation shows that

$$
\operatorname{ker}\left(A^{*}\right)=\operatorname{ran}(A)^{\perp}
$$

Now recall that if V is a linear subspace of H, then $V^{\perp \perp}=\bar{V}$ to obtain

$$
\operatorname{ker}\left(A^{*}\right)^{\perp}=\operatorname{ran}(A)^{\perp \perp}=\overline{\operatorname{ran}(A)}
$$

Answer: Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$. Then $\operatorname{ker}\left(A^{*}\right)^{\perp}=\overline{\operatorname{ran}(A)}$.

[^0]
[^0]: ${ }^{1}$ Recall that if $\|B\|<1$, then $I+B$ is invertible, and $(I+B)^{-1}=\sum_{n=0}^{\infty}(-B)^{n}$.

