Applied Analysis (APPM 5450): Midterm 1

8.30am - 9.50am, Feb. 15, 2010. Closed books.

Problem 1: (30p total, 5p per question) Let H denote a Hilbert space with an ON-basis $\left(e_{n}\right)_{n=1}^{\infty}$. Which of the following statements are necessarily true? No motivation required.
(a) $e_{n} \rightharpoonup 0$.
(b) Suppose that $x, x_{n} \in H$ and $\lim _{n \rightarrow \infty}\left(x_{n}, e_{m}\right)=\left(x, e_{m}\right)$ for every m. Then $x_{n} \rightharpoonup x$.
(c) Suppose that $P \in \mathcal{B}(H)$ is such that $P^{2}=P$ and $P \neq 0$. Then $\|P\|=1$ if and only if $P^{*}=P$.
(d) Suppose $A \in \mathcal{B}(H)$ is self-adjoint. Then $C=\exp (i A)$ is unitary.
(e) Suppose that $A, B \in \mathcal{B}(H)$, that A is coercive, and that B is positive. Then $A+B$ is coercive.
(f) Suppose that $A, B \in \mathcal{B}(H)$, and that A is self-adjoint. Then $E=B A B^{*}$ is self-adjoint.

Problem 2: (26p) Let \mathbb{T} denote the one-dimensional torus, parameterized with the interval $I=(-\pi, \pi]$. Set $e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$, and let \mathcal{P} denote the set of all finite linear combinations of basis functions e_{n}, as usual. Let z denote a non-zero complex number and consider the PDE

$$
\begin{equation*}
\frac{\partial u}{\partial t}=z \frac{\partial^{2} u}{\partial x^{2}}, \tag{1}
\end{equation*}
$$

along with periodic boundary conditions, and with the initial condition

$$
\begin{equation*}
u(x, 0)=f(x), \quad x \in I . \tag{2}
\end{equation*}
$$

(a) (10p) Construct the solution operator $T(t): \mathcal{P} \rightarrow \mathcal{P}$ that maps a function $f \in \mathcal{P}$ to a function $u=T(t) f$ that solves (1) and (2).
(b) (8p) Suppose that $t>0$. For which values of z can the solution operator $T(t)$ be extended to a bounded operator on $L^{2}(\mathbb{T})$? (Recall that \mathcal{P} is dense in $L^{2}(\mathbb{T})$.)
(c) (8p) Suppose that $t>0$ and that z is such that $T(t)$ is a bounded operator on $L^{2}(\mathbb{T})$. Suppose that $f \in L^{2}(\mathbb{T})$. For which values of z can you guarantee that $T(t) f \in C^{1}(\mathbb{T})$? Can you ever guarantee that $T(t) f \in C^{2}(\mathbb{T})$?

Problem 3: (24p) Let H denote a Hilbert space.
(a) (8p) Suppose that $U, T \in \mathcal{B}(H)$, that U is unitary, and that $\|T\|=1 / 3$. Prove that $A=U+T$ is continuously invertible.
(b) (8p) Suppose that $S \in \mathcal{B}(H)$ and that S is skew-symmetric. Prove that $\operatorname{ran}(I+S)$ is closed.
(c) (8 p) For the particular case of $H=L^{2}(I)$ with $I=[-1,1]$, give an example of a unitary operator $U \in \mathcal{B}(H)$ and a skew-symmetric operator $S \in \mathcal{B}(H)$ such that $\operatorname{ran}(U+S)$ is not closed.

Problem 4: (20p) Recall that if A is an $n \times n$ matrix with complex entries, then

$$
\begin{equation*}
\operatorname{ran}(A)=\left(\operatorname{ker}\left(A^{*}\right)\right)^{\perp} \tag{3}
\end{equation*}
$$

Now suppose that H is a Hilbert space, and $A \in \mathcal{B}(H)$. State and prove a relationship analogous to (3) that A must satisfy.

