
Homework set 8 — APPM5450 Spring 2007 — Solutions/Hints

Problem 11.1: For (b) prove that all the elements of the sub-base are convex just as you proved
that balls in an NLS are convex. Then prove that any intersection of convex sets must be convex,
which shows that the base must be convex. For (c), pick any x, y ∈ X. Since (pα)α∈A separates
points, there is a β ∈ A such that pβ(x − y) is non zero. Set ε = pβ(x − y)/3. Then the sets
Ωx = {z ∈ X : pβ(x− z) < ε} and Ωy = {z ∈ X : pβ(y− z) < ε} are open disjoint neighborhoods
of x and y, respectively.

Problem 11.2: [Note: It is necessary to assume that (pn)
∞
n=1 separates points.]

First prove that for any non-negative numbers a, b, and c such that a ≤ b+ c we have

a

1 + a
≤ b

1 + b
+

c

1 + c
.

This is easily done by just multiplying both sides by (1 + a)(1 + b)(1 + c). This shows that if p is
a semi-norm, then

p(x− y)

1 + p(x− y)
≤ p(x− z)

1 + p(x− z)
+

p(z − y)

1 + p(z − y)
, ∀x, y, z ∈ X.

Then

d(x, y) =

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
≤

∞∑
n=1

1

2n

(
pn(x− z)

1 + pn(x− z)
+

pn(z − y)

1 + pn(z − y)

)
= d(x, z) + d(z, y).

So d satisfies the triangle inequality.

We next need to prove that d(x, y) = 0 iff x = y. Suppose x = y. Then pn(x − y) = 0 for all
n, so d(x, y) = 0. Suppose next that x ̸= y. Then for some n0 we have pn0(x − y) > 0, and so
d(x, y) ≥ 2−n0 pn0(x− y)/(1 + pn0(x− y)) > 0.

It remains to prove that the metric Td induced by d equals the topology T induced by the family
of semi-norms.. Suppose xj → x in T . Fix ε > 0. Pick N such that

∑∞
n=N+1 2

−n < ε. Then

d(x, xj) =

∞∑
n=1

1

2n
pn(x− xj)

1 + pn(x− xj)
≤ ε+

N∑
n=1

1

2n
pn(x− xj)

1 + pn(x− xj)
→ ε, as j → ∞.

Since ε was arbitrary, d(x, xj) → 0 and so xj → x in Td. Now suppose xj does not converge to
x in T . Then for some seminorm pn0 , there exists a ε > 0 and a subsequence (xjk)

∞
k=1 such that

pn0(xjk − x) > ε. Then

d(xjk , x) > 2−n0 pn0(xjk − x)/(1 + pn0(x− y)) > 2−n0 ε/(1 + ε)

so xj does not converge to x in Td either.

Problem 11.6: We find that

⟨D(log |x|)φ⟩ = −⟨log |x|φ′⟩ = −
∫
R
log |x|φ′(x) dx

= − lim
ε→0

{∫ −ε

−∞
log(−x)φ′(x) dx+

∫ ∞

ε
log(x)φ′(x) dx

}
.

Partial integrations yield

− ⟨log |x|φ′⟩ = − lim
ε→0

{
[log(−x)φ(x)]−ε−∞ −

∫ −ε

−∞

1

−x
φ(x) dx+

[log(x)φ(x)]∞ε +

∫ ∞

ε

1

x
φ(x) dx

}
= ⟨PV(1/x), φ⟩+ lim

ε→0

{
log(ε)

(
φ(ε)− φ(−ε)

)}
.
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Since ∣∣φ(ε)− φ(−ε)
∣∣ = ∣∣∣∣∫ ε

−ε
φ′(x) dx

∣∣∣∣ ≤ 2ε||φ||1,0

and lim
ε→0

{ε log ε} = 0, we find that lim
ε→ 0

{
log(ε)

(
φ(ε)− φ(−ε)

)}
= 0.

Problem 11.7: First prove that x · δ(x) = 0 and that x ·PV(1/x) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that · is distributive and
can pair any two distributions. Then on the one hand we would have

δ(x) · x · PV(1/x) = δ(x) · (x · PV(1/x)) = δ(x) · 1 = δ(x).

But we would also have

δ(x) · x · PV(1/x) = (x · δ(x)) · PV(1/x) = 0 · PV(1/x) = 0.

This is a contradiction.

Problem 11.8: Fix φ ∈ S. Set α =
∫
φ, and define

(1) ψ(x) =

∫ x

−∞

(
φ(z)− αω(z)

)
dz.

Obviously, ψ ∈ C∞, and

(2) φ(x) = αω(x) + ψ′(x).

Moreover, we find that if n ≥ 1, then

||ψ||n,k = ||(1 + |x|2)k/2ψ(n)||u
= ||(1 + |x|2)k/2(φ(n−1) − αω(n−1))||u ≤ ||φ||n−1,k + |α| ||ω||n−1,k.

It remains to prove that for any k,

sup
x
(1 + |x|2)k/2|ψ(x)| <∞.

First consider x ≤ 0. Then for any k, we have

sup
x≤0

(1 + |x|2)k/2|ψ(x)|

≤ lim sup
x≤0

[
(1 + |x|2)k/2

∫ x

−∞

1

(1 + |y|(k+2)/2)
||φ||0,k+2 dy

+ |α|(1 + |x|2)k/2
∫ x

−∞

1

(1 + |y|(k+2)/2)
||ω||0,k+2 dy

]
<∞.

To prove the corresponding estimate for x ≥ 0, we use that since∫ x

−∞

(
φ(z)− αω(z)

)
dz︸ ︷︷ ︸

=ψ(x)

+

∫ ∞

x

(
φ(z)− αω(z)

)
dz = 0,

we can also express ψ as

ψ(x) = −
∫ ∞

x

(
φ(z)− αω(z)

)
dz.

Then proceed as in the bound for x ≤ 0.
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Problem 11.10:

(a) Fix h. We need to prove that if φn → φ in S, then τhφn → τhφ in S.

Suppose that φn → φ in S. Fix α, k. Then

pα,k(τhφ) = sup
y

(
1 + |y|2

)k/2 |∂αφ(y − h)| = sup
x

(
1 + |x+ h|2

)k/2 |∂αφ(x)|
≤ sup

x

(
1 + 2 |x|2 + 2 |h|2

)k/2 |∂αφ(x)|.
Now use that 1 + 2 |h|2 + 2 |x|2 ≤ 2(1 + |h|2)(1 + |x|2) to get

pα,k(τhφ) ≤ sup
x

(
2(1 + |x|2)(1 + |h|2)

)k/2 |∂αφ(x)|
= 2k/2(1 + |h|2)k/2 sup

x

(
1 + |x|2

)k/2 |∂αφ(x)| = 2k/2(1 + |h|2)k/2pα,k(φ).

Now we can easily prove that τhφn → φ in S. We have

pα,k(τhφn − τhφ) = pα,k(τh(φn − φ)) ≤ 2k/2(1 + |h|2)k/2pα,k(φn − φ).

Since pα,k(φn − φ) → 0 by assumption, it follows that pα,k(τhφn − τhφ) → 0, and since α, k were
arbitrary, it follows that τhφn → τhφ in S.

(b) Fix φ ∈ S. We will first prove that τhφ→ φ in S when h→ 0 in Rd.

Fix α and k. We need to prove that pα,k(τhφ− φ) → 0 as h → 0. To this end, fix a real number
R (to be determined) and observe that

pα,k(τhφ− φ) = sup
x
(1 + |x|2)k/2|∂α(φ(x− h)− φ(x))|

≤ sup
|x|>R

(1 + |x|2)k/2|∂αφ(x)|︸ ︷︷ ︸
=:c1

+ sup
|x|>R

(1 + |x|2)k/2|∂αφ(x− h)|︸ ︷︷ ︸
=:c2

+ sup
|x|≤R

(1 + |x|2)k/2|∂α(φ(x− h)− φ(x))|︸ ︷︷ ︸
=:c3

.

Fix ε > 0. Since ∂αφ decays faster than any polynomial, we can find a number R such that
c1 + c2 ≤ ε. To handle c3, we observe that

|∂α(φ(x− h)− φ(x))| =
∣∣∣∣∫ 1

0
h · ∇(∂αφ(x− t h)) dt

∣∣∣∣ ≤ |h|1 sup
|β|=|α|+1

||∂βφ||u = |h|1 sup
|β|=|α|+1

||φ||0,β.

It follows that

c3 ≤ (1 +R2)k/2 |h|1 sup
|β|=|α|+1

||φ||0,β.

Taking the limit as h→ 0, we find that

lim sup
h→0

pα,k(τhφ− φ) ≤ lim sup
h→0

(c1 + c2 + c3) ≤ lim sup
h→0

(ε+ (1 +R2)k/2 |h|1 sup
|β|=|α|+1

||φ||0,β) = ε.

Since ε was arbitrary, it follows that

lim
h→0

pα,k(τhφ− φ) = 0

which completes the first part of the proof.

It remains to prove that for any ψ ∈ S it is the case that τh′ψ → τhψ in S when h′ → h in Rd. But
this is easy due to group property. Simply set φ = τhψ and g = h′ − h. Then g → 0, so τgφ → φ
in S. But τgφ = τh′−h τh ψ = τh′ ψ so we are done.
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Problem 1:

⟨Df,φ⟩ = −⟨f, φ′⟩ = −
∫ 0

−∞
(−x)φ′(x) dx−

∫ ∞

0
xφ′(x) dx

= [xφ(x)]0−∞︸ ︷︷ ︸
=0

−
∫ 0

−∞
φ(x) dx− [xφ(x)]∞0︸ ︷︷ ︸

=0

+

∫ 0

−∞
φ(x) dx = ⟨g, φ⟩,

where

g(x) =

{
−1 x ≤ 0
1 x > 0.

So Df = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) Further-
more,

⟨D2 f, φ⟩ = ⟨Dg,φ⟩ = −⟨g, φ′⟩ =
∫ 0

−∞
φ′(x) dx−

∫ ∞

0
φ′(x) dx

= [φ(x)]0−∞ − [φ(x)]∞0 = φ(0)− (−φ(0)) = 2φ(0) = ⟨2δ, φ⟩,

so D2f = 2δ.

Problem 2: Assume that f satisfies the given assumptions. We will prove that for any α and k,
there exists a number C and a finite integer N such that

||f φ||α,k ≤ C
∑

|β|,l≤N

||φ||β,l.

This immediately proves both that f φ ∈ S, and that f φn → f φ whenever φn → φ in S.
Fix α and k. Then

||f φ||α,k = sup
x
(1 + |x|2)k/2|∂α(f(x)φ(x))|

= sup
x
(1 + |x|2)k/2|

∑
β+γ=α

α!

β! γ!
(∂γf(x))(∂βφ(x))|.

Now using that for each γ there exist finite numbers Nγ and Cγ such that

|∂γf(x)| ≤ Cγ(1 + |x|2)Nγ/2

we obtain

||f φ||α,k ≤ sup
x
(1 + |x|2)k/2

∑
β+γ=α

α!

β! γ!
Cγ(1 + |x|2)Nγ/2|(∂βφ(x))|

=
∑

β+γ=α

α!

β! γ!
Cγ ||φ||β,k+Nγ .
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Problem 3: Define for n = 1, 2, 3, . . . , the functions

χn(x) =

{
1 x ∈

[
n− 1

4n , n
]
,

0 otherwise,

and set

f(x) =

∞∑
n=1

2n χn(x).

Now (2) clearly holds for any k. To prove (3) note that for any given k, we have∫ ∞

−∞
(1 + |x|2)k/2 |f(x)| dx =

∞∑
n=1

∫ n

n−4−n

(1 + |x|2)k/2|f(x)| dx

≤
∞∑
n=1

∫ n

n−4−n

(1 + n2)k/22n dx =

∞∑
n=1

1

2n
(1 + n2)k/2 <∞.


