Homework 13

12.4) Give an example of a monotonic decreasing sequence of nonnegative functions converging pointwise to a function f such that the equality in Theorem 12.33 (Monotone convergence) does not hold.

Consider $f_{n}(x)=\frac{1}{n}$ for all $x \in R$. Then $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) d x=\infty$, whereas $\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x=0$.

Problem 1) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on R such that $\lim _{n \rightarrow \infty} f_{n}(x)=x$ for all $x \in R$. Specify which of the following limits necessarily exist, and give a formula for the limit in the cases where this is possible:
(1) $\lim _{n \rightarrow \infty} \int_{1}^{2} \frac{f_{n}(x)}{1+f_{n}(x)^{2}} d x$

We can bound the integrand: $\left|\frac{f_{n}(x)}{1+f_{n}(x)^{2}}\right| \leq \sup _{t} \frac{|t|}{1+t^{2}} \leq 1$
Then, since $\int_{1}^{2} 1 d x=1<\infty$ dominated convergence applies:
$\lim _{n \rightarrow \infty} \int_{1}^{2} \frac{f_{n}(x)}{1+f_{n}(x)^{2}} d x=\int_{1}^{2} \lim _{n \rightarrow \infty} \frac{f_{n}(x)}{1+f_{n}(x)^{2}} d x=\int_{1}^{2} \frac{x}{1+x^{2}} d x=\left[\frac{\log \left(1+x^{2}\right)}{2}\right]_{1}^{2}=\log \left(\sqrt{\frac{5}{2}}\right)$
(2) $\lim _{n \rightarrow \infty} \int_{0}^{\sin \left(f_{n}(x)\right)} \frac{f_{n}(x)}{\sin } d x$

We can bound the integrand: $\left|\frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)}\right| \leq\left|\frac{\sin (t)}{t}\right| \leq 1$
Then, since $\int_{0}^{1} 1 d x=1<\infty$ dominated convergence applies:
$\lim _{n \rightarrow \infty} \int_{0}^{1 \sin \left(f_{n}(x)\right)} \frac{f_{n}(x)}{f^{n}} d x=\int_{0 n \rightarrow \infty}^{1} \lim _{n \rightarrow \infty} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x=\int_{0}^{1 \sin (x)} \frac{x}{x} d x \approx 0.946083$
(3) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x$

We can bound the integrand: $\left|\frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)}\right| \leq\left|\frac{\sin (t)}{t}\right| \leq 1$
However, since $\int_{0}^{\infty} 1 d x=\infty$ dominated convergence does not apply.
For this problem we can actually achieve different values for the limit depending on $f_{n}(x)$.
a) Define $f_{n}(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq 2 \pi n \\ \pi & x>2 \pi n\end{array}\right.$, then $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x=\frac{\pi}{2}$
b) Note that $\frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)}$ oscillates about the x -axis with decreasing magnitude. For each n we can construct $f_{n}(x)$ so that $\frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)}$ is made by adding up 2 n sections of area above the x axis while counting just n sections of area below the x -axis. Then $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x=\infty$
(4) $\lim _{N \rightarrow \infty} \int_{0}^{1} \sum_{n=1}^{N} \frac{\left|f_{n}(x)\right|}{n^{2}\left(1+\left|f_{n}(x)\right|\right)} d x$

Since every term in the sum is non-negative monotonic convergence applies:
$\lim _{N \rightarrow \infty} \int_{0}^{1} \sum_{n=1}^{N} \frac{\left|f_{n}(x)\right|}{n^{2}\left(1+\left|f_{n}(x)\right|\right)} d x=\int_{0}^{1} \sum_{n=1}^{\infty} \frac{\left|f_{n}(x)\right|}{n^{2}\left(1+\left|f_{n}(x)\right|\right)} d x<\infty$
We know that the limit exists and is finite, but what the actual limit is depends on $\left(f_{n}\right)_{n=1}^{\infty}$.
(5) $\lim _{N \rightarrow \infty} \int_{0}^{\infty} \sum_{n=1}^{N} \frac{1}{n^{2}\left(1+\left|f_{n}(x)\right|^{2}\right)^{2}} d x$

Since every term in the sum is non-negative monotonic convergence applies:
$\lim _{N \rightarrow \infty} \int_{0}^{\infty} \sum_{n=1}^{N} \frac{1}{n^{2}\left(1+\left|f_{n}(x)\right|^{2}\right)^{2}} d x=\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(1+\left|f_{n}(x)\right|^{2}\right)^{2}} d x$
Once again the limit exists, but now (depending on $\left.\left(f_{n}\right)_{n=1}^{\infty}\right)$ it might be infinite (the key difference is that the interval is no longer finite). Consider:
a) $\quad f_{n}(x)=x$ for all n . Then $\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(1+x^{2}\right)^{2}} d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)} d x=\frac{\pi^{2}}{6} \frac{\pi}{2}=\frac{\pi^{3}}{12}$
b) $\quad f_{n}(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq n \\ 0 & x>n\end{array}\right.$. Then the integral is infinite.

Problem 2) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on R such that $\left|f_{n}(x)\right| \leq 1$ and $\lim _{n \rightarrow \infty} f_{n}(x)=1$ for all $x \in R$. Evaluate the following (justify your calculation):
$\lim _{n \rightarrow \infty} \int_{R} f_{n}(\cos x) e^{-\frac{1}{2}(x-2 \pi n)^{2}} d x$
$\lim _{n \rightarrow \infty} \int_{R} f_{n}(\cos x) e^{-\frac{1}{2}(x-2 \pi n)^{2}} d x \stackrel{y=x-2 \pi n}{=} \lim _{n \rightarrow \infty} \int_{R} f_{n}(\cos (y+2 \pi n)) e^{-\frac{1}{2} y^{2}} d y=\lim _{n \rightarrow \infty} \int_{R} f_{n}(\cos y) e^{-\frac{1}{2} y^{2}} d y=\left(^{*}\right)$
Note that the first equality is a substitution and the second uses the periodicity of cosine.
For all y we have $f_{n}(\cos y) e^{-\frac{1}{2} y^{2}} \xrightarrow{n \rightarrow \infty} e^{-\frac{1}{2} y^{2}}$ and $\left|f_{n}(\cos y) e^{-\frac{1}{2} y^{2}}\right| \leq e^{-\frac{1}{2} y^{2}}$
Then, since $\int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y<\infty$, dominated convergence applies:
$(*)=\lim _{n \rightarrow \infty} \int_{R} f_{n}(\cos y) e^{-\frac{1}{2} y^{2}} d y=\int_{R} \lim _{n \rightarrow \infty} f_{n}(\cos y) e^{-\frac{1}{2} y^{2}} d y=\int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y=\sqrt{2 \pi}$

Problem 3) The solution to this problem is mostly provided as a hint on the homework page. Below the holes in the solution (given as questions in the hint) are filled in.
(3) What can you tell about $\Omega_{m n}^{k}$ in light of (2)?

You can conclude that $\mu\left(\left(\Omega_{m n}^{k}\right)^{c}\right)=0$
(4) What do you know about Ω^{k} in view of your conclusion from (3)?
$\mu\left(\left(\Omega^{k}\right)^{c}\right)=\mu\left(\bigcup_{m, n=N_{k}}^{\infty}\left(\Omega_{m n}^{k}\right)^{c}\right) \leq \sum_{m, n=N_{k}}^{\infty} \mu\left(\left(\Omega_{m n}^{k}\right)^{c}\right)=0$
(5) What do you know about Ω in view of your conclusion from (4)? $\mu\left(\Omega^{c}\right)=\mu\left(\bigcup_{k=1}^{\infty}\left(\Omega^{k}\right)^{c}\right) \leq \sum_{k=1}^{\infty} \mu\left(\left(\Omega^{k}\right)^{c}\right)=0$
(6) What can you tell about $\left(f_{n}(x)\right)_{n=1}^{\infty}$ for $x \in \Omega$?

Because $\left(f_{n}(x)\right)_{n=1}^{\infty}$ is Cauchy for $x \in \Omega$ it makes sense to define $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ in this region.
For $x \in \Omega^{c}$ we can simply set $f(x)=0$.
Fix $\varepsilon>0$. Pick $k>1 / \varepsilon$. Then, for $n \geq N_{k}$ we have:

$$
\begin{aligned}
& \left\|f-f_{n}\right\|_{\infty}=\underset{x \in X}{\operatorname{ess} \sup }\left|f(x)-f_{n}(x)\right| \stackrel{(5)}{=} \underset{x \in \Omega}{\operatorname{ess} \sup }\left|f(x)-f_{n}(x)\right| \leq \sup _{x \in \Omega}\left|f(x)-f_{n}(x)\right|=\sup _{x \Omega \Omega} \lim _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right| \leq \\
& \leq \limsup _{m \rightarrow \infty} \underbrace{}_{\leq \frac{1}{k} \text { once } m \geq N_{k}}\left|f_{m}(x)-f_{n}(x)\right| \leq \frac{1}{k}<\varepsilon
\end{aligned}
$$

Note that the equality denoted by "(5)" uses $\mu\left(\Omega^{c}\right)=0$ (proved in (5) above).
Because ε was arbitrary this implies that $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$

