
Homework 13 
 

12.4) Give an example of a monotonic decreasing sequence of nonnegative functions 

converging pointwise to a function f  such that the equality in Theorem 12.33 (Monotone 

convergence) does not hold. 
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Problem 1) Let ( )∞=1nnf be a sequence of real valued measurable functions on R  such that 

( ) xxfn
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=
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lim  for all Rx∈ .  Specify which of the following limits necessarily exist, and give a 

formula for the limit in the cases where this is possible: 
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We can bound the integrand: 
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dx  dominated convergence applies: 

( )
( )

( )
( )

( )










=







 +
=

+
=

+
=

+ ∫∫∫ ∞→∞→ 2

5
log

2

1log

11
lim

1
lim

2

1

2
2

1 2

2

1 2

2

1 2

x
dx

x

x
dx

xf

xf
dx

xf

xf

n

n

n
n

n

n
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We can bound the integrand: 
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We can bound the integrand: 
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However, since ∞=∫
∞

0
1dx  dominated convergence does not apply. 

For this problem we can actually achieve different values for the limit depending on ( )xfn . 
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b) Note that 
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 oscillates about the x-axis with decreasing magnitude.  For each n 
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Since every term in the sum is non-negative monotonic convergence applies: 
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We know that the limit exists and is finite, but what the actual limit is depends on ( )∞=1nnf . 
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Since every term in the sum is non-negative monotonic convergence applies: 
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Once again the limit exists, but now (depending on ( )∞=1nnf ) it might be infinite (the key 

difference is that the interval is no longer finite).  Consider: 
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11

1

1 32

0 2
1

20
1

22

πππ
==

+
=

+ ∫∑∫ ∑
∞∞

=

∞ ∞

=

dx
xn

dx
xn nn

 

b) ( )




>

≤≤
=

nx

nxx
xfn

0

0
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Problem 2) Let ( )∞=1nnf be a sequence of real valued measurable functions on R  such that 

( ) 1≤xfn  and ( ) 1lim =
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xfn
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 for all Rx∈ .  Evaluate the following (justify your calculation): 
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Note that the first equality is a substitution and the second uses the periodicity of cosine. 

For all y we have ( )
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Problem 3) The solution to this problem is mostly provided as a hint on the homework page.  

Below the holes in the solution (given as questions in the hint) are filled in. 

 

(3) What can you tell about k

mnΩ  in light of (2)? 

You can conclude that ( )( ) 0=Ω
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(4) What do you know about kΩ  in view of your conclusion from (3)? 
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(5) What do you know about Ω  in view of your conclusion from (4)? 
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(6) What can you tell about ( )( )∞=1nn xf  for Ω∈x ? 

Because ( )( )∞=1nn xf  is Cauchy for Ω∈x  it makes sense to define ( ) ( )xfxf n
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For cx Ω∈  we can simply set ( ) 0=xf . 
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Note that the equality denoted by “(5)” uses ( ) 0=Ωcµ  (proved in (5) above). 

 

Because ε  was arbitrary this implies that 0→−
∞nff  


