Homework set 12 — APPM5450, Spring 2010

From the textbook: 12.2, 12.3, 12.5, 12.7.

Problem: Let (X, μ) be a measure space and consider the space $L^{\infty}(X, \mu)$ consisting of all measurable functions from X to \mathbb{R} such that

$$||f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)| < \infty.$$

Prove that $L^{\infty}(X,\mu)$ is closed under the norm $||\cdot||_{\infty}$.

Hint: You may want to start as follows:

- (1) Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(X,\mu)$.
- (2) For each positive integer k, there exists and N_k such that for $m, n \ge N_k$, $||f_n f_m||_{\infty} < 1/k$.
- (3) For each k, and for each $m, n \geq N_k$, let Ω_{mn}^k denote the set of all $x \in X$ such that $|f_m(x) f_n(x)| < 1/k$. What can you tell about Ω_{mn}^k in light of (2)?
- (4) Set $\Omega^k = \bigcap_{m,n=N_k}^{\infty} \Omega_{mn}^k$. What do you know about Ω^k in view of your conclusion from (3)?
- (5) Set $\Omega = \bigcap_{k=1}^{\infty} \Omega^k$. What do you know about Ω in view of your conclusion from (4)?
- (6) What can you tell about $(f_n(x))_{n=1}^{\infty}$ for $x \in \Omega$?