
Applied Analysis (APPM 5450): Final — Solutions
7.30 am – 10.00 am, May 6, 2010. Closed books.

Problem 1: (28p) Four points for each question. No motivation required.

(a) State the axioms for a σ-algebra.
(b) Let H be a Hilbert space, and let A ∈ B(H). Which statements are necessarily true:

(i) If A∗A = I, then ||Ax|| = ||x|| for all x ∈ H.
(ii) If ||Ax|| = ||x|| for all x ∈ H, then (Ax, Ay) = (x, y) for all x, y ∈ H.
(iii) If (Ax, Ay) = (x, y) for all x, y ∈ H, then A is unitary.

(c) Let (φn)
∞
n=1 be a sequence of Schwartz functions on R that are all supported in the interval

I = [−1, 1]. Suppose further that

lim
n→∞

(
sup
x∈I

|φn(x)− φ(x)|
)

= 0.

Which of the following statements are necessarily true:
(i) φn → φ in S(R).
(ii) φn → φ in S∗(R).
(iii) φn → φ in norm in Lp(R) for all p ∈ [1, ∞].

(d) Define an operator A on L2(R) via [Au](x) = 1
2

(
u(x) + u(−x)

)
. (To be rigorous, we could define

A on S(R) and then extend it to L2(R) via a density argument.) Specify σ(A).
(e) Let p ∈ [1, ∞], and define functions (fn)

∞
n=1 ⊂ Lp(R) via fn = 1√

n
χ[0, n]. For which p ∈ [1, ∞]

does (fn)
∞
n=1 converge weakly?

(f) Define f ∈ S∗(R) via f(x) = sin(x). What is f̂?
(g) Let F : L2(R) → L2(R) denote the Fourier transform. What is the spectrum of F?

Solution:

(a) See text book.

(b) (i) is TRUE since ||Ax||2 = (Ax, Ax) = (A∗Ax, x) = (Ix, x) = ||x||2.
(ii) is TRUE due to the polarization identity.
(iii) is FALSE since the condition does not imply that the operator is onto (the right-shift operator
on ℓ2(N) provides a counter example).

(c) (i) is FALSE since, for instance, ||φn − φ||1,0 = ||φ′
n − φ′||u need not converge to zero.

(ii) is TRUE.
(iii) is TRUE.

(d) σ(A) = {0, 1}. (Note that A is a projection operator.)

(e) For p ≥ 2. We have ||fn||∞ = n−1/2 so clearly fn → 0 in L∞ (in norm, even). For finite p, we have

||fn||p = n
1
p
− 1

2 . For p > 2, we see that lim
n→∞

||fn|| = 0, while for p < 2, we have lim
n→∞

||fn||p = ∞
so (fn) cannot possibly converge weakly. In the borderline case p = 2 we have ||fn||2 = 1, but we
can show weak convergence by verifying that (fn, g) → 0 for all g in a dense subset (such as the
compactly supported functions).

(f) f̂ =
√
2π
2i

(
τ1δ − τ−1δ) (so that ⟨f̂ , φ⟩ =

√
2π
2i

(
φ(−1) − φ(1)

)
). To see this, observe that sin(x) =

1
2i

(
eix − e−ix), that F [eikx φ] = τkφ̂, and that F1 =

√
2πδ.

(g) σ(F) = σp(F) = {1, −1, i, −i}. Partial credit is given for the answer that σ(F) ⊆ {λ ∈ C : |λ| =
1} which you can deduce from the fact that F is unitary.



Problem 2: (24p) Set H = L2(R), and consider for n = 1, 2, 3, . . . the operator An ∈ B(H) given by

[Anu](x) = e−x2/2n u(x).

Each operator An is self-adjoint, and you may use this fact without proving it. Briefly motivate your
answers to all questions below except part (c):

(a) (4p) Is An compact?
(b) (4p) Is An non-negative? Positive? Coercive?
(c) (6p) Specify σ(An), σp(An), σc(An), and σr(An).
(d) (6p) Does the sequence (An)

∞
n=1 converge in B(H)? If so, specify the limit and the mode of

convergence.
(e) (4p) With F the Fourier transform, describe the operator Ân = F∗AnF ∈ B(H).

That is, specify the action of Ân without referring to F . Does (Ân)
∞
n=1 converge?

Solution:

(a) No, An is not compact. To prove this, set φj = 2j/2 χ(2−j , 2−j+1). Then (φj)
∞
j=1 is a bounded

sequence, but (Anφj)
∞
j=1 cannot have a convergent subsequence since it is an orthogonal sequence

in which the vectors satisfy ||An φj || ≥ e−1/2.

(b) An is positive (and hence non-negative). To see this, fix a non-zero vector u. Then pick an R such
that

∫
|x|≤R |u(x)|2 dx = ϵ > 0. Then

(Anu, u) =

∫ ∞

−∞
e−x2/2n|u(x)|2 dx ≥

∫ R

−R
e−x2/2n|u(x)|2 dx ≥ e−R2/2n ε > 0.

To see that An is not coercive, set ψj = χ(j, j+1). Then ||ψj || = 1, and lim
j→∞

||Anψj || = 0.

(c) σ(An) = σc(An) = [0, 1]. σp(An) = σr(An) = ∅.

(d) (An) converges strongly to the identity. To prove this, fix any u ∈ H. Then

(1) ||Anu− u||2 =
∫ ∞

−∞

(
e−x2/2n − 1

)2
|u(x)|2 dx.

The integrand in (1) converges pointwise to zero as n→ ∞. Moreover, the integrand is dominated

by |u(x)|2, and
∫
R
|u|2 <∞. Therefore, the LDCT applies, and lim

n→∞
||Anu− u||2 = 0.

To see that (An) cannot converge in norm, set ψj = χ(j, j+1). Then ||ψj || = 1, and so ||An − I|| ≥
||(An − I)ψj || ≥ 1− e−j2/2n. Taking the limit as j → ∞, we see ||An − I|| ≥ 1.

(e) The key observation is that multiplication by a function in physical space corresponds to convo-

lution in Fourier space. To formalize, set φn(x) = e−x2/2n, and pick v ∈ H. Then

Ân v = F∗ [An [F v]] = F∗ [An v̂] = F∗ [φn v̂] =
√
2π φ̌n ∗ v.

Since φ̌n(t) =
√
n e−n t2/2, we find

[Ân v](t) =
√
n
√
2π

∫ ∞

−∞
e−n (t−s)2/2 v(s) ds.

Finally, observe that since F is unitary, the convergence properties of (Ân) are exactly the same

as those of (An). In other words, (Ân) converges strongly (and not in norm) to F∗ I F = I.



Problem 3: (18p) Let p be a real number such that 1 ≤ p < ∞, and let (fn)
∞
n=1 be a sequence of

functions in Lp(R) that converges pointwise to a function f . In other words,

lim
n→∞

fn(x) = f(x), for all x ∈ R.

Suppose further that all fn satisfy

|fn(x)| ≤ 2|f(x)|, for all x ∈ R.
For each of the three sets of conditions on f given below, specify for which r ∈ [1,∞) it is necessarily the
case that

lim
n→∞

||f − fn||Lr(R) = 0.

(a) |f | ≤ χ[−1, 1].

(b) f ∈ Lp(R) and |f(x)| ≤ 1 for all x ∈ R.

(c) f ∈ Lp(R).

For each part, three points for a correct answer, and three points for a correct motivation.

Solution: (a) r ∈ [1, ∞). (b) r ∈ [p, ∞). (c) r = p.

To motivate, we need to prove the claim when it is true, and provide counter-examples when it is not.
The basic question we need to resolve is when

(2) lim
n→∞

∫ ∞

−∞
|f(x)− fn(x)|r dx = 0.

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end,
we construct a dominator h via

|f(x)− fn(x)|r ≤
(
|f(x)|+ |fn(x)|

)r ≤ (|f(x)|+ 2 |f(x)|
)r

= 3r |f(x)|r =: h(x).

We will analyze each of the three assumptions to see when
∫
h <∞.

(a) If |f | ≤ χ[−1, 1], then h ≤ 3r χ[−1, 1] so
∫
h < r3 2 <∞ and LDCT applies.

(b) Case 1 - r ≥ p: In this case, h(x) = 3r |f(x)|r ≤ 3r |f(x)|p since |f(x)| ≤ 1. Therefore,
∫
h ≤

r3||f ||pp <∞, and LDCT applies.

Case 2 - r < p: In this case, the LDCT does not apply, and we look for a counter-example. Pick

a real number α such that −1
r < α < −1

p , and set f(x) = xα χ[1,∞). Then f ∈ Lp. Set

fn = (1− 1/n) f . Then fn → f pointwise, but ||f − fn||rr = ||(1/n)f ||rr =
∫∞
1 n−r xαr dx = ∞.

(c) Case 1 - r > p: When |f | is not necessarily bounded, |f |r is not bounded by |f |p and the LDCT

does not apply. We look for a counter-example. Pick a real number α such that −1
p < α < −1

r ,

and set f(x) = xα χ(0, 1). Then f ∈ Lp. Set fn = (1 − 1/n) f . Then fn → f pointwise, but

||f − fn||rr = ||(1/n)f ||rr =
∫ 1
0 n

−r xαr dx = ∞.

Case 2 - r = p: In this case,
∫
h =

∫
3p |f |p = 3p||f ||pp <∞ so LDCT applies.

Case 3 - r < p: In this case, the same counter-example we constructed in part (b) works.

Note: A complete motivation requires counter-examples for the case where the claim does not hold.
However, nobody provided them, so only one point was docked for such an omission.



Problem 4: (15p) Let (cn)
∞
n=1 be a sequence of complex numbers such that

∞∑
n=1

n6 |cn|2 <∞,

and set

u(x) =
∞∑
n=1

cn e
i n x.

For which non-negative integers k is it necessarily the case that u ∈ Ck([−π, π])? Motivate your answer
without invoking the Sobolev embedding theorem.

Solution: For k = 0, 1, 2.

Set uN =
∑N

n=1 cn e
inx. Then uN ∈ Ck for all k. If we can prove that (uN )∞N=1 is Cauchy in Ck, then we

invoke the fact that Ck is complete to argue that the limit function u ∈ Ck.

Set

B =

∞∑
n=1

n6 |cn|2 <∞,

let j be a non-negative integer, and let M and N be integers such that M < N . Then for any x we find

∣∣∂j(uN (x)−uM (x)
)∣∣ = ∣∣∣∣∣∂j

N∑
n=M+1

cn e
inx

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M+1

(in)j cn e
inx

∣∣∣∣∣ ≤
N∑

n=M+1

nj |cn| ≤ {Cauchy-Schwartz}

≤

(
N∑

n=M+1

n2j−6

)1/2 ( N∑
n=M+1

n6 |cn|2
)1/2

≤

( ∞∑
n=M+1

n2j−6

)1/2

B = DM,j B,

where

DM,j =

( ∞∑
n=M+1

n2j−6

)1/2

.

It follows that

||uN − uM ||Ck ≤
k∑

j=0

DM,j B.

Observe that lim
M→∞

DM,j = 0 when 2j − 6 < −1. Since j is an integer, this happens when j = 0, 1, 2.

Note: Most answers to this questions consisted of a demonstration that the sum ∂ku =
∑
cn (in)

k einx

converges in the L2-norm when k ≤ 3. This shows that u ∈ H3, not that u ∈ C3. To get to C3, you need
to invoke some type of Sobolev embedding results such as the one used above.

Also note that while the question asked for amotivation that did not merely invoke the Sobolev embedding
theorem, it can of course be used to arrive at the correct answer. The theorem says thatHm(Td) ⊂ Ck(Td)
when k < m−d/2. In our case, we find that u ∈ H3(T1), so m = 3 and d = 1. We must have k < 3−1/2,
or, in other words, k = 0, 1, 2.



Problem 5: (15p) Define f ∈ S∗(R) via f(x) = |x|/(1 + |x|). Calculate the distributional derivatives f ′

and f ′′. Please motivate carefully.

Solution: Observe that f(x) =
1 + |x| − 1

1 + |x|
= 1− 1

1 + |x|
.

First we evaluate f ′. Fix φ ∈ S. Then

⟨f ′, φ⟩ = −⟨f, φ′⟩ = −
∫ ∞

−∞
φ′︸ ︷︷ ︸

=0

+

∫ 0

−∞

1

1− x
φ′ +

∫ ∞

0

1

1 + x
φ′

=

[
1

1− x
φ

]0
−∞

−
∫ 0

−∞

1

(1− x)2
φ+

[
1

1 + x
φ

]∞
0

+

∫ ∞

0

1

(1 + x)2
φ

= φ(0)−
∫ 0

−∞

1

(1− x)2
φ− φ(0) +

∫ ∞

0

1

(1 + x)2
φ = ⟨g, φ⟩

where g = f ′ is a regular function given by

f ′(x) = g(x) =
sign(x)

(1 + |x|)2
.

(The definition of g(0) is arbitrary.)

Observe that in the calculation above we used that lim
x→±∞

φ(x) = 0 for any φ ∈ S.

Proceeding to f ′′ = g′, we find

⟨f ′′, φ⟩ = ⟨g′, φ⟩ = −⟨g, φ′⟩ =
∫ 0

−∞

1

(1− x)2
φ′ −

∫ ∞

0

1

(1 + x)2
φ′

=

[
1

(1− x)2
φ

]0
−∞

−
∫ 0

−∞

2

(1− x)3
φ−

[
1

(1 + x)2
φ

]∞
0

−
∫ ∞

0

2

(1 + x)3
φ

= φ(0)−
∫ 0

−∞

2

(1− x)3
φ+ φ(0)−

∫ ∞

0

2

(1 + x)3
φ.

We see that
f ′′ = g′ = 2δ + h,

where h is a regular function given by

h(x) = − 2

(1 + |x|)3
.

Note: Many solutions given involved sign errors, mistaken calculations of the derivative, etc. Such errors
of course only result in a very minor loss of points, but notice that they are entirely unnecessary. The
signs are obvious if you simply sketch the graphs of f and f ′. Moreover, away from the origin, f is a
regular function and its distributional derivatives must coincide with its classical derivatives, which can
easily be evaluated.


