Applied Analysis (APPM 5450): Final - Solutions

$7.30 \mathrm{am}-10.00 \mathrm{am}$, May 6, 2010. Closed books.
Problem 1: (28p) Four points for each question. No motivation required.
(a) State the axioms for a σ-algebra.
(b) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$. Which statements are necessarily true:
(i) If $A^{*} A=I$, then $\|A x\|=\|x\|$ for all $x \in H$.
(ii) If $\|A x\|=\|x\|$ for all $x \in H$, then $(A x, A y)=(x, y)$ for all $x, y \in H$.
(iii) If $(A x, A y)=(x, y)$ for all $x, y \in H$, then A is unitary.
(c) Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be a sequence of Schwartz functions on \mathbb{R} that are all supported in the interval $I=[-1,1]$. Suppose further that

$$
\lim _{n \rightarrow \infty}\left(\sup _{x \in I}\left|\varphi_{n}(x)-\varphi(x)\right|\right)=0 .
$$

Which of the following statements are necessarily true:
(i) $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S}(\mathbb{R})$.
(ii) $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S}^{*}(\mathbb{R})$.
(iii) $\varphi_{n} \rightarrow \varphi$ in norm in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty]$.
(d) Define an operator A on $L^{2}(\mathbb{R})$ via $[A u](x)=\frac{1}{2}(u(x)+u(-x))$. (To be rigorous, we could define A on $\mathcal{S}(\mathbb{R})$ and then extend it to $L^{2}(\mathbb{R})$ via a density argument.) Specify $\sigma(A)$.
(e) Let $p \in[1, \infty]$, and define functions $\left(f_{n}\right)_{n=1}^{\infty} \subset L^{p}(\mathbb{R})$ via $f_{n}=\frac{1}{\sqrt{n}} \chi_{[0, n]}$. For which $p \in[1, \infty]$ does $\left(f_{n}\right)_{n=1}^{\infty}$ converge weakly?
(f) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=\sin (x)$. What is \hat{f} ?
(g) Let $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ denote the Fourier transform. What is the spectrum of \mathcal{F} ?

Solution:

(a) See text book.
(b) (i) is TRUE since $\|A x\|^{2}=(A x, A x)=\left(A^{*} A x, x\right)=(I x, x)=\|x\|^{2}$.
(ii) is TRUE due to the polarization identity.
(iii) is FALSE since the condition does not imply that the operator is onto (the right-shift operator on $\ell^{2}(\mathbb{N})$ provides a counter example).
(c) (i) is FALSE since, for instance, $\left\|\varphi_{n}-\varphi\right\|_{1,0}=\left\|\varphi_{n}^{\prime}-\varphi^{\prime}\right\|_{\mathrm{u}}$ need not converge to zero.
(ii) is TRUE.
(iii) is TRUE.
(d) $\sigma(A)=\{0,1\}$. (Note that A is a projection operator.)
(e) For $p \geq 2$. We have $\left\|f_{n}\right\|_{\infty}=n^{-1 / 2}$ so clearly $f_{n} \rightarrow 0$ in L^{∞} (in norm, even). For finite p, we have $\left\|f_{n}\right\|_{p}=n^{\frac{1}{p}-\frac{1}{2}}$. For $p>2$, we see that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|=0$, while for $p<2$, we have $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\infty$ so $\left(f_{n}\right)$ cannot possibly converge weakly. In the borderline case $p=2$ we have $\left\|f_{n}\right\|_{2}=1$, but we can show weak convergence by verifying that $\left(f_{n}, g\right) \rightarrow 0$ for all g in a dense subset (such as the compactly supported functions).
(f) $\hat{f}=\frac{\sqrt{2 \pi}}{2 i}\left(\tau_{1} \delta-\tau_{-1} \delta\right)$ (so that $\langle\hat{f}, \varphi\rangle=\frac{\sqrt{2 \pi}}{2 i}(\varphi(-1)-\varphi(1))$). To see this, observe that $\sin (x)=$ $\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$, that $\mathcal{F}\left[e^{i k x} \varphi\right]=\tau_{k} \hat{\varphi}$, and that $\mathcal{F} 1=\sqrt{2 \pi} \delta$.
(g) $\sigma(\mathcal{F})=\sigma_{\mathrm{p}}(\mathcal{F})=\{1,-1, i,-i\}$. Partial credit is given for the answer that $\sigma(\mathcal{F}) \subseteq\{\lambda \in \mathbb{C}:|\lambda|=$ $1\}$ which you can deduce from the fact that \mathcal{F} is unitary.

Problem 2: $(24 \mathrm{p})$ Set $H=L^{2}(\mathbb{R})$, and consider for $n=1,2,3, \ldots$ the operator $A_{n} \in \mathcal{B}(H)$ given by

$$
\left[A_{n} u\right](x)=e^{-x^{2} / 2 n} u(x) .
$$

Each operator A_{n} is self-adjoint, and you may use this fact without proving it. Briefly motivate your answers to all questions below except part (c):
(a) (4p) Is A_{n} compact?
(b) (4p) Is A_{n} non-negative? Positive? Coercive?
(c) (6p) Specify $\sigma\left(A_{n}\right), \sigma_{\mathrm{p}}\left(A_{n}\right), \sigma_{\mathrm{c}}\left(A_{n}\right)$, and $\sigma_{\mathrm{r}}\left(A_{n}\right)$.
(d) (6p) Does the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, specify the limit and the mode of convergence.
(e) (4p) With \mathcal{F} the Fourier transform, describe the operator $\hat{A}_{n}=\mathcal{F}^{*} A_{n} \mathcal{F} \in \mathcal{B}(H)$. That is, specify the action of \hat{A}_{n} without referring to \mathcal{F}. Does $\left(\hat{A}_{n}\right)_{n=1}^{\infty}$ converge?

Solution:

(a) No, A_{n} is not compact. To prove this, set $\varphi_{j}=2^{j / 2} \chi_{\left(2^{-j}, 2^{-j+1}\right)}$. Then $\left(\varphi_{j}\right)_{j=1}^{\infty}$ is a bounded sequence, but $\left(A_{n} \varphi_{j}\right)_{j=1}^{\infty}$ cannot have a convergent subsequence since it is an orthogonal sequence in which the vectors satisfy $\left\|A_{n} \varphi_{j}\right\| \geq e^{-1 / 2}$.
(b) A_{n} is positive (and hence non-negative). To see this, fix a non-zero vector u. Then pick an R such that $\int_{|x| \leq R}|u(x)|^{2} d x=\epsilon>0$. Then

$$
\left(A_{n} u, u\right)=\int_{-\infty}^{\infty} e^{-x^{2} / 2 n}|u(x)|^{2} d x \geq \int_{-R}^{R} e^{-x^{2} / 2 n}|u(x)|^{2} d x \geq e^{-R^{2} / 2 n} \varepsilon>0 .
$$

To see that A_{n} is not coercive, set $\psi_{j}=\chi_{(j, j+1)}$. Then $\left\|\psi_{j}\right\|=1$, and $\lim _{j \rightarrow \infty}\left\|A_{n} \psi_{j}\right\|=0$.
(c) $\sigma\left(A_{n}\right)=\sigma_{\mathrm{c}}\left(A_{n}\right)=[0,1] \cdot \sigma_{\mathrm{p}}\left(A_{n}\right)=\sigma_{\mathrm{r}}\left(A_{n}\right)=\emptyset$.
(d) $\left(A_{n}\right)$ converges strongly to the identity. To prove this, fix any $u \in H$. Then

$$
\begin{equation*}
\left\|A_{n} u-u\right\|^{2}=\int_{-\infty}^{\infty}\left(e^{-x^{2} / 2 n}-1\right)^{2}|u(x)|^{2} d x \tag{1}
\end{equation*}
$$

The integrand in (1) converges pointwise to zero as $n \rightarrow \infty$. Moreover, the integrand is dominated by $|u(x)|^{2}$, and $\int_{\mathbb{R}}|u|^{2}<\infty$. Therefore, the LDCT applies, and $\lim _{n \rightarrow \infty}\left\|A_{n} u-u\right\|^{2}=0$.

To see that $\left(A_{n}\right)$ cannot converge in norm, set $\psi_{j}=\chi_{(j, j+1)}$. Then $\left\|\psi_{j}\right\|=1$, and so $\left\|A_{n}-I\right\| \geq$ $\left\|\left(A_{n}-I\right) \psi_{j}\right\| \geq 1-e^{-j^{2} / 2 n}$. Taking the limit as $j \rightarrow \infty$, we see $\left\|A_{n}-I\right\| \geq 1$.
(e) The key observation is that multiplication by a function in physical space corresponds to convolution in Fourier space. To formalize, set $\varphi_{n}(x)=e^{-x^{2} / 2 n}$, and pick $v \in H$. Then

$$
\hat{A}_{n} v=\mathcal{F}^{*}\left[A_{n}[\mathcal{F} v]\right]=\mathcal{F}^{*}\left[A_{n} \hat{v}\right]=\mathcal{F}^{*}\left[\varphi_{n} \hat{v}\right]=\sqrt{2 \pi} \check{\varphi}_{n} * v
$$

Since $\breve{\varphi}_{n}(t)=\sqrt{n} e^{-n t^{2} / 2}$, we find

$$
\left[\hat{A}_{n} v\right](t)=\sqrt{n} \sqrt{2 \pi} \int_{-\infty}^{\infty} e^{-n(t-s)^{2} / 2} v(s) d s
$$

Finally, observe that since \mathcal{F} is unitary, the convergence properties of $\left(\hat{A}_{n}\right)$ are exactly the same as those of $\left(A_{n}\right)$. In other words, $\left(\hat{A}_{n}\right)$ converges strongly (and not in norm) to $\mathcal{F}^{*} I \mathcal{F}=I$.

Problem 3: (18p) Let p be a real number such that $1 \leq p<\infty$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $L^{p}(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \text { for all } x \in \mathbb{R}
$$

Suppose further that all f_{n} satisfy

$$
\left|f_{n}(x)\right| \leq 2|f(x)|, \quad \text { for all } x \in \mathbb{R}
$$

For each of the three sets of conditions on f given below, specify for which $r \in[1, \infty)$ it is necessarily the case that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{r}(\mathbb{R})}=0 .
$$

(a) $|f| \leq \chi_{[-1,1]}$.
(b) $f \in L^{p}(\mathbb{R})$ and $|f(x)| \leq 1$ for all $x \in \mathbb{R}$.
(c) $f \in L^{p}(\mathbb{R})$.

For each part, three points for a correct answer, and three points for a correct motivation.
Solution: $\begin{array}{lll}\text { (a) } r \in[1, \infty) . & \text { (b) } r \in[p, \infty) . & \text { (c) } r=p .\end{array}$

To motivate, we need to prove the claim when it is true, and provide counter-examples when it is not. The basic question we need to resolve is when

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f(x)-f_{n}(x)\right|^{r} d x=0 \tag{2}
\end{equation*}
$$

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end, we construct a dominator h via

$$
\left|f(x)-f_{n}(x)\right|^{r} \leq\left(|f(x)|+\left|f_{n}(x)\right|\right)^{r} \leq(|f(x)|+2|f(x)|)^{r}=3^{r}|f(x)|^{r}=: h(x) .
$$

We will analyze each of the three assumptions to see when $\int h<\infty$.
(a) If $|f| \leq \chi_{[-1,1]}$, then $h \leq 3^{r} \chi_{[-1,1]}$ so $\int h<r^{3} 2<\infty$ and LDCT applies.
(b) Case $1-r \geq p$: In this case, $h(x)=3^{r}|f(x)|^{r} \leq 3^{r}|f(x)|^{p}$ since $|f(x)| \leq 1$. Therefore, $\int h \leq$ $r^{3}\|f\|_{p}^{p}<\infty$, and LDCT applies.

Case $2-r<p$: In this case, the LDCT does not apply, and we look for a counter-example. Pick a real number α such that $-\frac{1}{r}<\alpha<-\frac{1}{p}$, and set $f(x)=x^{\alpha} \chi_{[1, \infty)}$. Then $f \in L^{p}$. Set $f_{n}=(1-1 / n) f$. Then $f_{n} \rightarrow f$ pointwise, but $\left\|f-f_{n}\right\|_{r}^{r}=\|(1 / n) f\|_{r}^{r}=\int_{1}^{\infty} n^{-r} x^{\alpha r} d x=\infty$.
(c) Case $1-r>p$: When $|f|$ is not necessarily bounded, $|f|^{r}$ is not bounded by $|f|^{p}$ and the LDCT does not apply. We look for a counter-example. Pick a real number α such that $-\frac{1}{p}<\alpha<-\frac{1}{r}$, and set $f(x)=x^{\alpha} \chi_{(0,1)}$. Then $f \in L^{p}$. Set $f_{n}=(1-1 / n) f$. Then $f_{n} \rightarrow f$ pointwise, but $\left\|f-f_{n}\right\|_{r}^{r}=\|(1 / n) f\|_{r}^{r}=\int_{0}^{1} n^{-r} x^{\alpha r} d x=\infty$.

Case 2-r $=p$: In this case, $\int h=\int 3^{p}|f|^{p}=3^{p}\|f\|_{p}^{p}<\infty$ so LDCT applies.
Case 3-r<p: In this case, the same counter-example we constructed in part (b) works.

Note: A complete motivation requires counter-examples for the case where the claim does not hold. However, nobody provided them, so only one point was docked for such an omission.

Problem 4: (15p) Let $\left(c_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers such that

$$
\sum_{n=1}^{\infty} n^{6}\left|c_{n}\right|^{2}<\infty
$$

and set

$$
u(x)=\sum_{n=1}^{\infty} c_{n} e^{i n x}
$$

For which non-negative integers k is it necessarily the case that $u \in C^{k}([-\pi, \pi])$? Motivate your answer without invoking the Sobolev embedding theorem.

Solution: For $k=0,1,2$.

Set $u_{N}=\sum_{n=1}^{N} c_{n} e^{i n x}$. Then $u_{N} \in C^{k}$ for all k. If we can prove that $\left(u_{N}\right)_{N=1}^{\infty}$ is Cauchy in C^{k}, then we invoke the fact that C^{k} is complete to argue that the limit function $u \in C^{k}$.

Set

$$
B=\sum_{n=1}^{\infty} n^{6}\left|c_{n}\right|^{2}<\infty
$$

let j be a non-negative integer, and let M and N be integers such that $M<N$. Then for any x we find

$$
\begin{aligned}
\left|\partial^{j}\left(u_{N}(x)-u_{M}(x)\right)\right|= & \left|\partial^{j} \sum_{n=M+1}^{N} c_{n} e^{i n x}\right|=\left|\sum_{n=M+1}^{N}(i n)^{j} c_{n} e^{i n x}\right| \leq \sum_{n=M+1}^{N} n^{j}\left|c_{n}\right| \leq\{\text { Cauchy-Schwartz }\} \\
& \leq\left(\sum_{n=M+1}^{N} n^{2 j-6}\right)^{1 / 2}\left(\sum_{n=M+1}^{N} n^{6}\left|c_{n}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{n=M+1}^{\infty} n^{2 j-6}\right)^{1 / 2} B=D_{M, j} B
\end{aligned}
$$

where

$$
D_{M, j}=\left(\sum_{n=M+1}^{\infty} n^{2 j-6}\right)^{1 / 2}
$$

It follows that

$$
\left\|u_{N}-u_{M}\right\|_{C^{k}} \leq \sum_{j=0}^{k} D_{M, j} B
$$

Observe that $\lim _{M \rightarrow \infty} D_{M, j}=0$ when $2 j-6<-1$. Since j is an integer, this happens when $j=0,1,2$.

Note: Most answers to this questions consisted of a demonstration that the sum $\partial^{k} u=\sum c_{n}(i n)^{k} e^{i n x}$ converges in the L^{2}-norm when $k \leq 3$. This shows that $u \in H^{3}$, not that $u \in C^{3}$. To get to C^{3}, you need to invoke some type of Sobolev embedding results such as the one used above.

Also note that while the question asked for a motivation that did not merely invoke the Sobolev embedding theorem, it can of course be used to arrive at the correct answer. The theorem says that $H^{m}\left(\mathbb{T}^{d}\right) \subset C^{k}\left(\mathbb{T}^{d}\right)$ when $k<m-d / 2$. In our case, we find that $u \in H^{3}\left(\mathbb{T}^{1}\right)$, so $m=3$ and $d=1$. We must have $k<3-1 / 2$, or, in other words, $k=0,1,2$.

Problem 5: (15p) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=|x| /(1+|x|)$. Calculate the distributional derivatives f^{\prime} and $f^{\prime \prime}$. Please motivate carefully.

Solution: Observe that $f(x)=\frac{1+|x|-1}{1+|x|}=1-\frac{1}{1+|x|}$.
First we evaluate f^{\prime}. Fix $\varphi \in \mathcal{S}$. Then

$$
\begin{aligned}
&\left\langle f^{\prime}, \varphi\right\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=-\underbrace{\int_{-\infty}^{\infty} \varphi^{\prime}}_{=0}+\int_{-\infty}^{0} \frac{1}{1-x} \varphi^{\prime}+\int_{0}^{\infty} \frac{1}{1+x} \varphi^{\prime} \\
&=\left[\frac{1}{1-x} \varphi\right]_{-\infty}^{0}-\int_{-\infty}^{0} \frac{1}{(1-x)^{2}} \varphi+\left[\frac{1}{1+x} \varphi\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{1}{(1+x)^{2}} \varphi \\
&=\varphi(0)-\int_{-\infty}^{0} \frac{1}{(1-x)^{2}} \varphi-\varphi(0)+\int_{0}^{\infty} \frac{1}{(1+x)^{2}} \varphi=\langle g, \varphi\rangle
\end{aligned}
$$

where $g=f^{\prime}$ is a regular function given by

$$
f^{\prime}(x)=g(x)=\frac{\operatorname{sign}(x)}{(1+|x|)^{2}} .
$$

(The definition of $g(0)$ is arbitrary.)
Observe that in the calculation above we used that $\lim _{x \rightarrow \pm \infty} \varphi(x)=0$ for any $\varphi \in \mathcal{S}$.
Proceeding to $f^{\prime \prime}=g^{\prime}$, we find

$$
\begin{aligned}
\left\langle f^{\prime \prime}, \varphi\right\rangle=\left\langle g^{\prime}, \varphi\right\rangle & =-\left\langle g, \varphi^{\prime}\right\rangle=\int_{-\infty}^{0} \frac{1}{(1-x)^{2}} \varphi^{\prime}-\int_{0}^{\infty} \frac{1}{(1+x)^{2}} \varphi^{\prime} \\
=\left[\frac{1}{(1-x)^{2}} \varphi\right]_{-\infty}^{0}-\int_{-\infty}^{0} \frac{2}{(1-x)^{3}} & \varphi-\left[\frac{1}{(1+x)^{2}} \varphi\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{2}{(1+x)^{3}} \varphi \\
& =\varphi(0)-\int_{-\infty}^{0} \frac{2}{(1-x)^{3}} \varphi+\varphi(0)-\int_{0}^{\infty} \frac{2}{(1+x)^{3}} \varphi
\end{aligned}
$$

We see that

$$
f^{\prime \prime}=g^{\prime}=2 \delta+h
$$

where h is a regular function given by

$$
h(x)=-\frac{2}{(1+|x|)^{3}} .
$$

Note: Many solutions given involved sign errors, mistaken calculations of the derivative, etc. Such errors of course only result in a very minor loss of points, but notice that they are entirely unnecessary. The signs are obvious if you simply sketch the graphs of f and f^{\prime}. Moreover, away from the origin, f is a regular function and its distributional derivatives must coincide with its classical derivatives, which can easily be evaluated.

