Applied Analysis (APPM 5450): Final

$7.30 \mathrm{am}-10.00 \mathrm{am}$, May 6, 2010. Closed books.
Problem 1: (28p) Four points for each question. No motivation required.
(a) State the axioms for a σ-algebra.
(b) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$. Which statements are necessarily true:
(i) If $A^{*} A=I$, then $\|A x\|=\|x\|$ for all $x \in H$.
(ii) If $\|A x\|=\|x\|$ for all $x \in H$, then $(A x, A y)=(x, y)$ for all $x, y \in H$.
(iii) If $(A x, A y)=(x, y)$ for all $x, y \in H$, then A is unitary.
(c) Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be a sequence of Schwartz functions on \mathbb{R} that are all supported in the interval $I=[-1,1]$. Suppose further that

$$
\lim _{n \rightarrow \infty}\left(\sup _{x \in I}\left|\varphi_{n}(x)-\varphi(x)\right|\right)=0
$$

Which of the following statements are necessarily true:
(i) $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S}(\mathbb{R})$.
(ii) $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S}^{*}(\mathbb{R})$.
(iii) $\varphi_{n} \rightarrow \varphi$ in norm in $L^{p}(\mathbb{R})$ for all $p \in[1, \infty]$.
(d) Define an operator A on $L^{2}(\mathbb{R})$ via $[A u](x)=\frac{1}{2}(u(x)+u(-x))$. (To be rigorous, we could define A on $\mathcal{S}(\mathbb{R})$ and then extend it to $L^{2}(\mathbb{R})$ via a density argument.) Specify $\sigma(A)$.
(e) Let $p \in[1, \infty]$, and define functions $\left(f_{n}\right)_{n=1}^{\infty} \subset L^{p}(\mathbb{R})$ via $f_{n}=\frac{1}{\sqrt{n}} \chi_{[0, n]}$. For which $p \in[1, \infty]$ does $\left(f_{n}\right)_{n=1}^{\infty}$ converge weakly?
(f) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=\sin (x)$. What is \hat{f} ?
(g) Let $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ denote the Fourier transform. What do you know about the spectrum of \mathcal{F} ?

Problem 2: (24p) Set $H=L^{2}(\mathbb{R})$, and consider for $n=1,2,3, \ldots$ the operator $A_{n} \in \mathcal{B}(H)$ given by

$$
\left[A_{n} u\right](x)=e^{-x^{2} / 2 n} u(x) .
$$

Each operator A_{n} is self-adjoint, and you may use this fact without proving it. Briefly motivate your answers to all questions below except part (c):
(a) (4p) Is A_{n} compact?
(b) (4p) Is A_{n} non-negative? Positive? Coercive?
(c) (6p) Specify $\sigma\left(A_{n}\right), \sigma_{\mathrm{p}}\left(A_{n}\right), \sigma_{\mathrm{c}}\left(A_{n}\right)$, and $\sigma_{\mathrm{r}}\left(A_{n}\right)$.
(d) (6p) Does the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, specify the limit and the mode of convergence.
(e) (4p) With \mathcal{F} the Fourier transform, describe the operator $\hat{A}_{n}=\mathcal{F}^{*} A_{n} \mathcal{F} \in \mathcal{B}(H)$. That is, specify the action of \hat{A}_{n} without referring to \mathcal{F}. Does $\left(\hat{A}_{n}\right)_{n=1}^{\infty}$ converge?

Problem 3: (18p) Let p be a real number such that $1 \leq p<\infty$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $L^{p}(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \text { for all } x \in \mathbb{R} .
$$

Suppose further that all f_{n} satisfy

$$
\left|f_{n}(x)\right| \leq 2|f(x)|, \quad \text { for all } x \in \mathbb{R}
$$

For each of the three sets of conditions on f given below, specify for which $r \in[1, \infty)$ it is necessarily the case that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{r}(\mathbb{R})}=0
$$

(a) $|f| \leq \chi_{[-1,1]}$.
(b) $f \in L^{p}(\mathbb{R})$ and $|f(x)| \leq 1$ for all $x \in \mathbb{R}$.
(c) $f \in L^{p}(\mathbb{R})$.

For each part, three points for a correct answer, and three points for a correct motivation.
Problem 4: (15p) Let $\left(c_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers such that

$$
\sum_{n=1}^{\infty} n^{6}\left|c_{n}\right|^{2}<\infty
$$

and set

$$
u(x)=\sum_{n=1}^{\infty} c_{n} e^{i n x} .
$$

For which non-negative integers k is it necessarily the case that $u \in C^{k}([-\pi, \pi])$? Motivate your answer without invoking the Sobolev embedding theorem.

Problem 5: (15p) Define $f \in \mathcal{S}^{*}(\mathbb{R})$ via $f(x)=|x| /(1+|x|)$. Calculate the distributional derivatives f^{\prime} and $f^{\prime \prime}$. Please motivate carefully.

