Applied Analysis (APPM 5450): Final

 $7.30 \,\mathrm{am} - 10.00 \,\mathrm{am}$, May 6, 2010. Closed books.

Problem 1: (28p) Four points for each question. No motivation required.

- (a) State the axioms for a σ -algebra.
- (b) Let H be a Hilbert space, and let A ∈ B(H). Which statements are necessarily true:
 (i) If A* A = I, then ||A x|| = ||x|| for all x ∈ H.
 (ii) If ||A x|| = ||x|| for all x ∈ H, then (Ax, Ay) = (x, y) for all x, y ∈ H.
 (iii) If (Ax, Ay) = (x, y) for all x, y ∈ H, then A is unitary.
- (c) Let $(\varphi_n)_{n=1}^{\infty}$ be a sequence of Schwartz functions on \mathbb{R} that are all supported in the interval I = [-1, 1]. Suppose further that

$$\lim_{n \to \infty} \left(\sup_{x \in I} |\varphi_n(x) - \varphi(x)| \right) = 0.$$

Which of the following statements are necessarily true:

- (i) $\varphi_n \to \varphi$ in $\mathcal{S}(\mathbb{R})$.
- (ii) $\varphi_n \to \varphi$ in $\mathcal{S}^*(\mathbb{R})$.
- (iii) $\varphi_n \to \varphi$ in norm in $L^p(\mathbb{R})$ for all $p \in [1, \infty]$.
- (d) Define an operator A on $L^2(\mathbb{R})$ via $[A u](x) = \frac{1}{2}(u(x) + u(-x))$. (To be rigorous, we could define A on $\mathcal{S}(\mathbb{R})$ and then extend it to $L^2(\mathbb{R})$ via a density argument.) Specify $\sigma(A)$.
- (e) Let $p \in [1, \infty]$, and define functions $(f_n)_{n=1}^{\infty} \subset L^p(\mathbb{R})$ via $f_n = \frac{1}{\sqrt{n}} \chi_{[0,n]}$. For which $p \in [1, \infty]$ does $(f_n)_{n=1}^{\infty}$ converge weakly?
- (f) Define $f \in \mathcal{S}^*(\mathbb{R})$ via $f(x) = \sin(x)$. What is \hat{f} ?
- (g) Let $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform. What do you know about the spectrum of \mathcal{F} ?

Problem 2: (24p) Set $H = L^2(\mathbb{R})$, and consider for n = 1, 2, 3, ... the operator $A_n \in \mathcal{B}(H)$ given by

$$[A_n u](x) = e^{-x^2/2n} u(x)$$

Each operator A_n is self-adjoint, and you may use this fact without proving it. Briefly motivate your answers to all questions below *except part* (c):

- (a) (4p) Is A_n compact?
- (b) (4p) Is A_n non-negative? Positive? Coercive?
- (c) (6p) Specify $\sigma(A_n)$, $\sigma_p(A_n)$, $\sigma_c(A_n)$, and $\sigma_r(A_n)$.
- (d) (6p) Does the sequence $(A_n)_{n=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, specify the limit and the mode of convergence.
- (e) (4p) With \mathcal{F} the Fourier transform, describe the operator $\hat{A}_n = \mathcal{F}^* A_n \mathcal{F} \in \mathcal{B}(H)$. That is, specify the action of \hat{A}_n without referring to \mathcal{F} . Does $(\hat{A}_n)_{n=1}^{\infty}$ converge?

Problem 3: (18p) Let p be a real number such that $1 \le p < \infty$, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^p(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \text{for all } x \in \mathbb{R}.$$

Suppose further that all f_n satisfy

$$|f_n(x)| \le 2|f(x)|, \quad \text{for all } x \in \mathbb{R}.$$

For each of the three sets of conditions on f given below, specify for which $r \in [1, \infty)$ it is necessarily the case that

$$\lim_{n \to \infty} ||f - f_n||_{L^r(\mathbb{R})} = 0.$$

- (a) $|f| \le \chi_{[-1,1]}$.
- (b) $f \in L^p(\mathbb{R})$ and $|f(x)| \leq 1$ for all $x \in \mathbb{R}$.
- (c) $f \in L^p(\mathbb{R})$.

For each part, three points for a correct answer, and three points for a correct motivation.

Problem 4: (15p) Let $(c_n)_{n=1}^{\infty}$ be a sequence of complex numbers such that

$$\sum_{n=1}^{\infty} n^6 \, |c_n|^2 < \infty,$$

and set

$$u(x) = \sum_{n=1}^{\infty} c_n e^{i n x}.$$

For which non-negative integers k is it necessarily the case that $u \in C^k([-\pi, \pi])$? Motivate your answer without invoking the Sobolev embedding theorem.

Problem 5: (15p) Define $f \in \mathcal{S}^*(\mathbb{R})$ via f(x) = |x|/(1+|x|). Calculate the distributional derivatives f' and f''. Please motivate carefully.