
Applied Analysis (APPM 5450): Midterm 3
11.35am – 12.50pm, April 23, 2008. Closed books.

Problem 1: Mark the following as TRUE/FALSE. Motivate your answers briefly.

(a) [2p] If fn ⇀ f in L2(Rd), then f̂n ⇀ f̂ in L2(Rd). (Note the weak convergence arrows.)

(b) [2p] Set B = {f ∈ L2(Rd) : ||f ||2 ≤ 1}. Then F is a bijection from B to B.

(c) [2p] Let f be a function on R such that
∫ ∞

−∞
(1 + |x|) |f(x)| dx < ∞. Then f̂ ∈ C1(R).

(d) [2p] If fn → f in L1(Rd), then f̂n → f̂ uniformly.

(e) [2p] If ϕn → ϕ in S(Rd) and α is a multi-index, then ∂α ϕ̂n → ∂α ϕ̂ in S(Rd).

Solution:

(a) TRUE.

Note that fn ⇀ f ⇔ 〈fn, g〉 → 〈f, g〉 ∀g ∈ L2.

Since F preserves the inner product: 〈fn, g〉 → 〈f, g〉 ∀g ∈ L2 ⇔ 〈f̂n, ĝ〉 → 〈f̂ , ĝ〉 ∀g ∈ L2.

Since F is bijective: 〈f̂n, ĝ〉 → 〈f̂ , ĝ〉 ∀g ∈ L2 ⇔ 〈f̂n, g〉 → 〈f̂ , g〉 ∀g ∈ L2.

(b) TRUE.
F is an isometry.

(c) TRUE.
Note that f̂ ′ = F [−i x f(x)].
Since x f(x) ∈ L1, the Riemann-Lebesgue lemma then asserts that f̂ ′ ∈ C0(R).

(d) TRUE.

Note that ||f̂ − f̂n||u = sup
t

∣∣∣∣βd

∫
e−i x t

(
f(x)− fn(x)

)
dx

∣∣∣∣ ≤ βd

∫
|f − fn| = βd||f − fn||L1 .

(e) TRUE.
Both F and ∂α are continuous maps on S(Rd). Then their composition must by continuous too.



Problem 2: [7p] Let d be a positive integer. Prove that if s is a real number that is “large
enough”, then Hs(Rd) ⊂ C0(Rd). Make sure to specify what “large enough” is.

Solution: The Riemann-Lebesgue lemma says that if f ∈ L1, then f̂ ∈ C0. It follows that if
f̂ ∈ L1, then ˆ̂

f ∈ C0. Noting that ˆ̂
f(x) = f(−x), we see that f̂ ∈ L1 ⇒ f ∈ C0.

We will prove that if f ∈ Hs for sufficiently large s, then f̂ ∈ L1.

Suppose that f ∈ Hs. Then
∫
|f̂(t)| dt =

∫
(1 + |t|2)−s/2 (1 + |t|2)s/2 |f̂(t)| dt ≤ {Cauchy-Schwartz}

≤
(∫

(1 + |t|2)−s dt

)1/2 (∫
(1 + |t|2)s |f̂(t)|2 dt

)1/2

=
(∫

(1 + |t|2)−s dt

)1/2

||f ||Hs .

Noting that
∫
Rd(1 + |t|2)−s dt < ∞ if −2s < −d, we find that f̂ ∈ L1 if s > d/2.



Problem 3: Calculate the Fourier transform of the following functions on R:

(a) [3p] The Dirac δ-function.

(b) [3p] f(x) = xk.

(c) [3p] g(x) = sin(x).

Solution:

(a) Fix a ϕ ∈ S. Then

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =
1√
2π

∫
e−i 0 x ϕ(x) dx =

1√
2π

∫
ϕ(x) dx = 〈 1√

2π
, ϕ〉.

It follows that δ̂ = 1/
√

2π.

(b) Note that F [(−i x)k T ] = ∂k T̂ for any function T . Set T = 1. Then from part (a) we find that
T̂ =

√
2π δ and so F [xk] = F [ik (−i x)k T ] = ik ∂k T̂ = ik

√
2π ∂k δ.

(c) Note that F [ei b x T ] = T̂ (x− b). It follows that, again with T = 1,

F [sin(x)] = F [
1
2i

(
ei x − e−i x

)
T ] =

1
2i

(
T̂ (x− 1)− T̂ (x + 1)

)
=
√

2π

2i

(
δ(x− 1)− δ(x + 1)

)
.



Problem 4:

(a) [2p] State the definition of a σ-algebra.

(b) [2p] Is every topology is a σ-algebra? Motivate your answer.

(c*) [2p] Is every σ-algebra a topology? Motivate your answer.

(d) [2p] State the definition of a measure.

(e) [4p] Let (X, A, µ) be a measure space, and let {Ωβ}β∈B be a countable collection of sets in A.
Prove directly from the definition of a measure that

(1) µ


 ⋃

β∈B

Ωβ


 = sup



µ


 ⋃

β∈C

Ωβ


 : C is a finite subset of B



 .

Hint: Since B is countable, you may assume that B = {1, 2, 3, . . . }. Then the statement you are

asked to prove is equivalent to the statement µ

( ∞⋃

n=1

Ωn

)
= sup

{
µ

(
N⋃

n=1

Ωn

)
: N = 1, 2, 3, . . .

}
.

(f*) [2p] Demonstrate that the formula (1) is not necessarily true if B is uncountable.

Solution:

(a) See the text book.

(b) No. Consider for instance the standard topology on R. The open interval (−1, 1) belongs to
the standard topology, but its complement (which is a closed set) does not.

(c) No. As a counter example, set X = R, and let A denote the collection of subsets of X that are
either countable, or have countable complements. This set is closed under countable unions and
intersections and is consequently a σ-algebra. But it is not a topology since it is not closed under
arbitrary unions. (For instance, for any x ∈ R, the set Ωx = {x} ∈ A, but

⋃

x≥0

Ωx = [0, ∞) /∈ A.)

(d) Set A1 = Ω1, and define for n = 2, 3, 4, . . . the sets An via

An = Ωn\



n−1⋃

j=1

Ωj


 .

Then
∞⋃

n=1

Ωn =
∞⋃

n=1

An, and
N⋃

n=1

Ωn =
N⋃

n=1

An,

but the unions of An’s are unions of disjoint sets. It follows from the definition of a measure that

µ

( ∞⋃

n=1

Ωn

)
= µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An) = sup
N

N∑

n=1

µ(An) = sup
N

µ

(
N⋃

n=1

An

)
= sup

N
µ

(
N⋃

n=1

Ωn

)
.

(f) Consider the standard Lebesgue measure on R. Define for x ∈ R the sets Ωx = {x}. Then
µ (∪x∈RΩx) = µ(R) = ∞, but µ (∪x∈CΩx) = µ(C) = 0 for any finite subset C of R.



Problem 5: [6p] We define for n = 1, 2, 3, . . . functions fn on R by fn(x) = n3/2 x e−n x2
. Either

prove that (fn)∞n=1 does not converges in S∗(R), or give the limit point and prove convergence.

Solution: Set gn(x) = −1
2

√
n e−n x2

. Then fn = g′n. Define the finite real number α via

(2) α = −1
2

∫ ∞

−∞
e−x2

dx.

Then ∫ ∞

−∞
gn(x) dx =

∫ ∞

−∞
−1

2
√

n e−n x2
dx = {x = y/

√
n} = −1

2

∫ ∞

−∞
e−y2

dy = α.

Since all gn’s are strictly negative, and their mass concentrate to the origin, it follows that gn → α δ
in S∗ (here we use the fact that an approximate identity converges to δ in S∗). Since differentiation
is a continuous operation on S∗ it follows that g′n → α δ′ and so fn → α δ′.

Remark: As it happens, α = −1
2

√
π, but giving this constant implicitly as in (2) gives full credit

for the problem.


