Applied Analysis (APPM 5450): Midterm 3

11.35am - 12.50pm, April 23, 2008. Closed books.

Problem 1: Mark the following as TRUE/FALSE. Motivate your answers briefly.

- (a) [2p] If $f_n \rightharpoonup f$ in $L^2(\mathbb{R}^d)$, then $\hat{f}_n \rightharpoonup \hat{f}$ in $L^2(\mathbb{R}^d)$. (Note the *weak* convergence arrows.)
- (b) [2p] Set $B = \{f \in L^2(\mathbb{R}^d) : ||f||_2 \le 1\}$. Then \mathcal{F} is a bijection from B to B.
- (c) [2p] Let f be a function on \mathbb{R} such that $\int_{-\infty}^{\infty} (1+|x|) |f(x)| dx < \infty$. Then $\hat{f} \in C^1(\mathbb{R})$.
- (d) [2p] If $f_n \to f$ in $L^1(\mathbb{R}^d)$, then $\hat{f}_n \to \hat{f}$ uniformly.
- (e) [2p] If $\varphi_n \to \varphi$ in $\mathcal{S}(\mathbb{R}^d)$ and α is a multi-index, then $\partial^{\alpha} \hat{\varphi}_n \to \partial^{\alpha} \hat{\varphi}$ in $\mathcal{S}(\mathbb{R}^d)$.

Solution:

(a) TRUE.

Note that $f_n \rightharpoonup f \quad \Leftrightarrow \quad \langle f_n, g \rangle \rightarrow \langle f, g \rangle \; \forall g \in L^2.$

Since \mathcal{F} preserves the inner product: $\langle f_n, g \rangle \to \langle f, g \rangle \ \forall g \in L^2 \quad \Leftrightarrow \quad \langle \hat{f}_n, \hat{g} \rangle \to \langle \hat{f}, \hat{g} \rangle \ \forall g \in L^2.$ Since \mathcal{F} is bijective: $\langle \hat{f}_n, \hat{g} \rangle \to \langle \hat{f}, \hat{g} \rangle \ \forall g \in L^2 \quad \Leftrightarrow \quad \langle \hat{f}_n, g \rangle \to \langle \hat{f}, g \rangle \ \forall g \in L^2.$

(b) TRUE.

 \mathcal{F} is an isometry.

(c) TRUE.

Note that $\hat{f}' = \mathcal{F}[-i x f(x)]$. Since $x f(x) \in L^1$, the Riemann-Lebesgue lemma then asserts that $\hat{f}' \in C_0(\mathbb{R})$.

(d) TRUE.

Note that
$$||\hat{f} - \hat{f}_n||_{\mathbf{u}} = \sup_t \left| \beta^d \int e^{-ixt} (f(x) - f_n(x)) dx \right| \le \beta^d \int |f - f_n| = \beta^d ||f - f_n||_{L^1}.$$

(e) TRUE.

Both \mathcal{F} and ∂^{α} are continuous maps on $\mathcal{S}(\mathbb{R}^d)$. Then their composition must by continuous too.

Problem 2: [7p] Let d be a positive integer. Prove that if s is a real number that is "large enough", then $H^s(\mathbb{R}^d) \subset C_0(\mathbb{R}^d)$. Make sure to specify what "large enough" is.

Solution: The Riemann-Lebesgue lemma says that if $f \in L^1$, then $\hat{f} \in C_0$. It follows that if $\hat{f} \in L^1$, then $\hat{f} \in C_0$. Noting that $\hat{f}(x) = f(-x)$, we see that $\hat{f} \in L^1 \Rightarrow f \in C_0$.

We will prove that if $f \in H^s$ for sufficiently large s, then $\hat{f} \in L^1$.

Suppose that $f \in H^s$. Then

$$\int |\hat{f}(t)| dt = \int (1+|t|^2)^{-s/2} (1+|t|^2)^{s/2} |\hat{f}(t)| dt \le \{\text{Cauchy-Schwartz}\}$$
$$\le \left(\int (1+|t|^2)^{-s} dt\right)^{1/2} \left(\int (1+|t|^2)^s |\hat{f}(t)|^2 dt\right)^{1/2} = \left(\int (1+|t|^2)^{-s} dt\right)^{1/2} ||f||_{H^{s/2}}$$

Noting that $\int_{\mathbb{R}^d} (1+|t|^2)^{-s} dt < \infty$ if -2s < -d, we find that $\hat{f} \in L^1$ if s > d/2.

Problem 3: Calculate the Fourier transform of the following functions on \mathbb{R} :

- (a) [3p] The Dirac δ -function.
- (b) [3p] $f(x) = x^k$.
- (c) [3p] $g(x) = \sin(x)$.

Solution:

(a) Fix a $\varphi \in \mathcal{S}$. Then

$$\langle \hat{\delta}, \varphi \rangle = \langle \delta, \hat{\varphi} \rangle = \hat{\varphi}(0) = \frac{1}{\sqrt{2\pi}} \int e^{-i\,0\,x} \varphi(x) \, dx = \frac{1}{\sqrt{2\pi}} \int \varphi(x) \, dx = \langle \frac{1}{\sqrt{2\pi}}, \varphi \rangle$$

It follows that $\hat{\delta} = 1/\sqrt{2\pi}$.

(b) Note that $\mathcal{F}[(-ix)^k T] = \partial^k \hat{T}$ for any function T. Set T = 1. Then from part (a) we find that $\hat{T} = \sqrt{2\pi} \delta$ and so $\mathcal{F}[x^k] = \mathcal{F}[i^k (-ix)^k T] = i^k \partial^k \hat{T} = i^k \sqrt{2\pi} \partial^k \delta$.

(c) Note that $\mathcal{F}[e^{ibx}T] = \hat{T}(x-b)$. It follows that, again with T = 1,

$$\mathcal{F}[\sin(x)] = \mathcal{F}[\frac{1}{2i} \left(e^{ix} - e^{-ix} \right) T] = \frac{1}{2i} \left(\hat{T}(x-1) - \hat{T}(x+1) \right) = \frac{\sqrt{2\pi}}{2i} \left(\delta(x-1) - \delta(x+1) \right)$$

Problem 4:

(a) [2p] State the definition of a σ -algebra.

(b) [2p] Is every topology is a σ -algebra? Motivate your answer.

(c^{*}) [2p] Is every σ -algebra a topology? Motivate your answer.

(d) [2p] State the definition of a *measure*.

(e) [4p] Let (X, \mathcal{A}, μ) be a measure space, and let $\{\Omega_{\beta}\}_{\beta \in B}$ be a <u>countable</u> collection of sets in \mathcal{A} . Prove directly from the definition of a measure that

(1)
$$\mu\left(\bigcup_{\beta\in B}\Omega_{\beta}\right) = \sup\left\{\mu\left(\bigcup_{\beta\in C}\Omega_{\beta}\right) : C \text{ is a finite subset of } B\right\}.$$

Hint: Since B is countable, you may assume that $B = \{1, 2, 3, ...\}$ *. Then the statement you are asked to prove is equivalent to the statement* $\mu\left(\bigcup_{n=1}^{\infty}\Omega_n\right) = \sup\left\{\mu\left(\bigcup_{n=1}^{N}\Omega_n\right) : N = 1, 2, 3, ...\right\}$ *.*

 (f^*) [2p] Demonstrate that the formula (1) is not necessarily true if B is uncountable.

Solution:

(a) See the text book.

(b) No. Consider for instance the standard topology on \mathbb{R} . The open interval (-1, 1) belongs to the standard topology, but its complement (which is a closed set) does not.

(c) No. As a counter example, set $X = \mathbb{R}$, and let \mathcal{A} denote the collection of subsets of X that are either countable, or have countable complements. This set is closed under countable unions and intersections and is consequently a σ -algebra. But it is not a topology since it is not closed under arbitrary unions. (For instance, for any $x \in \mathbb{R}$, the set $\Omega_x = \{x\} \in \mathcal{A}$, but $\bigcup_{x \ge 0} \Omega_x = [0, \infty) \notin \mathcal{A}$.)

(d) Set $A_1 = \Omega_1$, and define for $n = 2, 3, 4, \ldots$ the sets A_n via

$$A_n = \Omega_n \setminus \left(\bigcup_{j=1}^{n-1} \Omega_j \right)$$

Then

$$\bigcup_{n=1}^{\infty} \Omega_n = \bigcup_{n=1}^{\infty} A_n, \quad \text{and} \quad \bigcup_{n=1}^{N} \Omega_n = \bigcup_{n=1}^{N} A_n$$

but the unions of A_n 's are unions of disjoint sets. It follows from the definition of a measure that

$$\mu\left(\bigcup_{n=1}^{\infty}\Omega_n\right) = \mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n) = \sup_N\sum_{n=1}^N\mu(A_n) = \sup_N\mu\left(\bigcup_{n=1}^NA_n\right) = \sup_N\mu\left(\bigcup_{n=1}^N\Omega_n\right).$$

(f) Consider the standard Lebesgue measure on \mathbb{R} . Define for $x \in \mathbb{R}$ the sets $\Omega_x = \{x\}$. Then $\mu(\bigcup_{x \in \mathbb{R}} \Omega_x) = \mu(\mathbb{R}) = \infty$, but $\mu(\bigcup_{x \in C} \Omega_x) = \mu(C) = 0$ for any finite subset C of \mathbb{R} .

Problem 5: [6p] We define for n = 1, 2, 3, ... functions f_n on \mathbb{R} by $f_n(x) = n^{3/2} x e^{-n x^2}$. Either prove that $(f_n)_{n=1}^{\infty}$ does not converges in $\mathcal{S}^*(\mathbb{R})$, or give the limit point and prove convergence.

Solution: Set $g_n(x) = -\frac{1}{2}\sqrt{n} e^{-nx^2}$. Then $f_n = g'_n$. Define the finite real number α via

(2)
$$\alpha = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-x^2} dx.$$

Then

$$\int_{-\infty}^{\infty} g_n(x) \, dx = \int_{-\infty}^{\infty} -\frac{1}{2} \sqrt{n} \, e^{-n \, x^2} \, dx = \{x = y/\sqrt{n}\} = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-y^2} \, dy = \alpha.$$

Since all g_n 's are strictly negative, and their mass concentrate to the origin, it follows that $g_n \to \alpha \delta$ in \mathcal{S}^* (here we use the fact that an approximate identity converges to δ in \mathcal{S}^*). Since differentiation is a continuous operation on \mathcal{S}^* it follows that $g'_n \to \alpha \delta'$ and so $f_n \to \alpha \delta'$.

Remark: As it happens, $\alpha = -\frac{1}{2}\sqrt{\pi}$, but giving this constant implicitly as in (2) gives full credit for the problem.