Applied Analysis (APPM 5450): Midterm 3

11.35am - 12.50pm, April 23, 2008. Closed books.

Problem 1: Mark the following as TRUE/FALSE. Motivate your answers briefly.
(a) $[2 \mathrm{p}]$ If $f_{n} \rightharpoonup f$ in $L^{2}\left(\mathbb{R}^{d}\right)$, then $\hat{f}_{n} \rightharpoonup \hat{f}$ in $L^{2}\left(\mathbb{R}^{d}\right)$. (Note the weak convergence arrows.)
(b) $[2 \mathrm{p}]$ Set $B=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right):\|f\|_{2} \leq 1\right\}$. Then \mathcal{F} is a bijection from B to B.
(c) $[2 \mathrm{p}]$ Let f be a function on \mathbb{R} such that $\int_{-\infty}^{\infty}(1+|x|)|f(x)| d x<\infty$. Then $\hat{f} \in C^{1}(\mathbb{R})$.
(d) [2p] If $f_{n} \rightarrow f$ in $L^{1}\left(\mathbb{R}^{d}\right)$, then $\hat{f}_{n} \rightarrow \hat{f}$ uniformly.
(e) $[2 \mathrm{p}]$ If $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ and α is a multi-index, then $\partial^{\alpha} \hat{\varphi}_{n} \rightarrow \partial^{\alpha} \hat{\varphi}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

Solution:

(a) TRUE.

Note that $f_{n} \rightharpoonup f \quad \Leftrightarrow \quad\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle \forall g \in L^{2}$.
Since \mathcal{F} preserves the inner product: $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle \forall g \in L^{2} \quad \Leftrightarrow \quad\left\langle\hat{f}_{n}, \hat{g}\right\rangle \rightarrow\langle\hat{f}, \hat{g}\rangle \forall g \in L^{2}$.
Since \mathcal{F} is bijective: $\left\langle\hat{f}_{n}, \hat{g}\right\rangle \rightarrow\langle\hat{f}, \hat{g}\rangle \forall g \in L^{2} \quad \Leftrightarrow \quad\left\langle\hat{f}_{n}, g\right\rangle \rightarrow\langle\hat{f}, g\rangle \forall g \in L^{2}$.
(b) TRUE.
\mathcal{F} is an isometry.
(c) TRUE.

Note that $\hat{f}^{\prime}=\mathcal{F}[-i x f(x)]$.
Since $x f(x) \in L^{1}$, the Riemann-Lebesgue lemma then asserts that $\hat{f}^{\prime} \in C_{0}(\mathbb{R})$.
(d) TRUE.

Note that $\left\|\hat{f}-\hat{f}_{n}\right\|_{\mathrm{u}}=\sup _{t}\left|\beta^{d} \int e^{-i x t}\left(f(x)-f_{n}(x)\right) d x\right| \leq \beta^{d} \int\left|f-f_{n}\right|=\beta^{d}| | f-f_{n} \|_{L^{1}}$.
(e) TRUE.

Both \mathcal{F} and ∂^{α} are continuous maps on $\mathcal{S}\left(\mathbb{R}^{d}\right)$. Then their composition must by continuous too.

Problem 2: [7p] Let d be a positive integer. Prove that if s is a real number that is "large enough", then $H^{s}\left(\mathbb{R}^{d}\right) \subset C_{0}\left(\mathbb{R}^{d}\right)$. Make sure to specify what "large enough" is.

Solution: The Riemann-Lebesgue lemma says that if $f \in L^{1}$, then $\hat{f} \in C_{0}$. It follows that if $\hat{f} \in L^{1}$, then $\hat{\hat{f}} \in C_{0}$. Noting that $\hat{\hat{f}}(x)=f(-x)$, we see that $\hat{f} \in L^{1} \Rightarrow f \in C_{0}$.

We will prove that if $f \in H^{s}$ for sufficiently large s, then $\hat{f} \in L^{1}$.
Suppose that $f \in H^{s}$. Then

$$
\begin{aligned}
\int|\hat{f}(t)| d t & =\int\left(1+|t|^{2}\right)^{-s / 2}\left(1+|t|^{2}\right)^{s / 2}|\hat{f}(t)| d t \leq\{\text { Cauchy-Schwartz }\} \\
\leq & \left(\int\left(1+|t|^{2}\right)^{-s} d t\right)^{1 / 2}\left(\int\left(1+|t|^{2}\right)^{s}|\hat{f}(t)|^{2} d t\right)^{1 / 2}=\left(\int\left(1+|t|^{2}\right)^{-s} d t\right)^{1 / 2}\|f\|_{H^{s}}
\end{aligned}
$$

Noting that $\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{-s} d t<\infty$ if $-2 s<-d$, we find that $\hat{f} \in L^{1}$ if $s>d / 2$.

Problem 3: Calculate the Fourier transform of the following functions on \mathbb{R} :
(a) $[3 \mathrm{p}]$ The Dirac δ-function.
(b) $[3 \mathrm{p}] f(x)=x^{k}$.
(c) $[3 \mathrm{p}] g(x)=\sin (x)$.

Solution:

(a) Fix a $\varphi \in \mathcal{S}$. Then

$$
\langle\hat{\delta}, \varphi\rangle=\langle\delta, \hat{\varphi}\rangle=\hat{\varphi}(0)=\frac{1}{\sqrt{2 \pi}} \int e^{-i 0 x} \varphi(x) d x=\frac{1}{\sqrt{2 \pi}} \int \varphi(x) d x=\left\langle\frac{1}{\sqrt{2 \pi}}, \varphi\right\rangle .
$$

It follows that $\hat{\delta}=1 / \sqrt{2 \pi}$.
(b) Note that $\mathcal{F}\left[(-i x)^{k} T\right]=\partial^{k} \hat{T}$ for any function T. Set $T=1$. Then from part (a) we find that $\hat{T}=\sqrt{2 \pi} \delta$ and so $\mathcal{F}\left[x^{k}\right]=\mathcal{F}\left[i^{k}(-i x)^{k} T\right]=i^{k} \partial^{k} \hat{T}=i^{k} \sqrt{2 \pi} \partial^{k} \delta$.
(c) Note that $\mathcal{F}\left[e^{i b x} T\right]=\hat{T}(x-b)$. It follows that, again with $T=1$,

$$
\mathcal{F}[\sin (x)]=\mathcal{F}\left[\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) T\right]=\frac{1}{2 i}(\hat{T}(x-1)-\hat{T}(x+1))=\frac{\sqrt{2 \pi}}{2 i}(\delta(x-1)-\delta(x+1)) .
$$

Problem 4:

(a) $[2 p]$ State the definition of a σ-algebra.
(b) [2p] Is every topology is a σ-algebra? Motivate your answer.
$\left(c^{*}\right)[2 \mathrm{p}]$ Is every σ-algebra a topology? Motivate your answer.
(d) $[2 p]$ State the definition of a measure.
(e) [4p] Let (X, \mathcal{A}, μ) be a measure space, and let $\left\{\Omega_{\beta}\right\}_{\beta \in B}$ be a countable collection of sets in \mathcal{A}. Prove directly from the definition of a measure that

$$
\begin{equation*}
\mu\left(\bigcup_{\beta \in B} \Omega_{\beta}\right)=\sup \left\{\mu\left(\bigcup_{\beta \in C} \Omega_{\beta}\right): C \text { is a finite subset of } B\right\} . \tag{1}
\end{equation*}
$$

Hint: Since B is countable, you may assume that $B=\{1,2,3, \ldots\}$. Then the statement you are asked to prove is equivalent to the statement $\mu\left(\bigcup_{n=1}^{\infty} \Omega_{n}\right)=\sup \left\{\mu\left(\bigcup_{n=1}^{N} \Omega_{n}\right): N=1,2,3, \ldots\right\}$.
$\left(f^{*}\right)[2 p]$ Demonstrate that the formula (1) is not necessarily true if B is uncountable.

Solution:

(a) See the text book.
(b) No. Consider for instance the standard topology on \mathbb{R}. The open interval $(-1,1)$ belongs to the standard topology, but its complement (which is a closed set) does not.
(c) No. As a counter example, set $X=\mathbb{R}$, and let \mathcal{A} denote the collection of subsets of X that are either countable, or have countable complements. This set is closed under countable unions and intersections and is consequently a σ-algebra. But it is not a topology since it is not closed under arbitrary unions. (For instance, for any $x \in \mathbb{R}$, the set $\Omega_{x}=\{x\} \in \mathcal{A}$, but $\bigcup_{x \geq 0} \Omega_{x}=[0, \infty) \notin \mathcal{A}$.)
(d) Set $A_{1}=\Omega_{1}$, and define for $n=2,3,4, \ldots$ the sets A_{n} via

$$
A_{n}=\Omega_{n} \backslash\left(\bigcup_{j=1}^{n-1} \Omega_{j}\right)
$$

Then

$$
\bigcup_{n=1}^{\infty} \Omega_{n}=\bigcup_{n=1}^{\infty} A_{n}, \quad \text { and } \quad \bigcup_{n=1}^{N} \Omega_{n}=\bigcup_{n=1}^{N} A_{n},
$$

but the unions of A_{n} 's are unions of disjoint sets. It follows from the definition of a measure that

$$
\mu\left(\bigcup_{n=1}^{\infty} \Omega_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sup _{N} \sum_{n=1}^{N} \mu\left(A_{n}\right)=\sup _{N} \mu\left(\bigcup_{n=1}^{N} A_{n}\right)=\sup _{N} \mu\left(\bigcup_{n=1}^{N} \Omega_{n}\right) .
$$

(f) Consider the standard Lebesgue measure on \mathbb{R}. Define for $x \in \mathbb{R}$ the sets $\Omega_{x}=\{x\}$. Then $\mu\left(\cup_{x \in \mathbb{R}} \Omega_{x}\right)=\mu(\mathbb{R})=\infty$, but $\mu\left(\cup_{x \in C} \Omega_{x}\right)=\mu(C)=0$ for any finite subset C of \mathbb{R}.

Problem 5: [6p] We define for $n=1,2,3, \ldots$ functions f_{n} on \mathbb{R} by $f_{n}(x)=n^{3 / 2} x e^{-n x^{2}}$. Either prove that $\left(f_{n}\right)_{n=1}^{\infty}$ does not converges in $\mathcal{S}^{*}(\mathbb{R})$, or give the limit point and prove convergence.

Solution: Set $g_{n}(x)=-\frac{1}{2} \sqrt{n} e^{-n x^{2}}$. Then $f_{n}=g_{n}^{\prime}$. Define the finite real number α via

$$
\begin{equation*}
\alpha=-\frac{1}{2} \int_{-\infty}^{\infty} e^{-x^{2}} d x \tag{2}
\end{equation*}
$$

Then

$$
\int_{-\infty}^{\infty} g_{n}(x) d x=\int_{-\infty}^{\infty}-\frac{1}{2} \sqrt{n} e^{-n x^{2}} d x=\{x=y / \sqrt{n}\}=-\frac{1}{2} \int_{-\infty}^{\infty} e^{-y^{2}} d y=\alpha
$$

Since all g_{n} 's are strictly negative, and their mass concentrate to the origin, it follows that $g_{n} \rightarrow \alpha \delta$ in \mathcal{S}^{*} (here we use the fact that an approximate identity converges to δ in \mathcal{S}^{*}). Since differentiation is a continuous operation on \mathcal{S}^{*} it follows that $g_{n}^{\prime} \rightarrow \alpha \delta^{\prime}$ and so $f_{n} \rightarrow \alpha \delta^{\prime}$.

Remark: As it happens, $\alpha=-\frac{1}{2} \sqrt{\pi}$, but giving this constant implicitly as in (2) gives full credit for the problem.

