
Applied Analysis (APPM 5450): Midterm 2 — Solutions
11.35am – 12.50pm, Mar 19, 2008. Closed books.

Problem 1: Let H1 and H2 be Hilbert spaces, and let A ∈ B(H1). Suppose further that U ∈
B(H1,H2) is a unitary map.

(a) Define the following sets: ρ(A), σ(A), σp(A), σc(A), σr(A). (4p)

(b) Prove that if λ ∈ σr(A), then λ̄ ∈ σp(A∗). (3p)

(c) Define the operator Â ∈ B(H2) by Â = U A U−1. Prove that σp(A) = σp(Â). (2p)

(d) Define the operator Â ∈ B(H2) by Â = U A U−1. Prove that σc(A) = σc(Â). (2p)

Solution:

(a) See the text book — Definitions 9.3 and 9.4.

(b) See the text book — Proposition 9.12.

(c) Note that

(1) Â− λ I = U A U−1 − λU U−1 = U (A− λ I) U−1.

Since U and U−1 are both one-to-one, it follows that:

λ /∈ σp(A) ⇔ ker(A− λ I) = {0} ⇔ ker(Â− λ I) = {0} ⇔ λ /∈ σp(Â)

(d) Suppose that λ ∈ σc(A). We will prove that then λ ∈ σc(Â).

Since λ ∈ σc(A), we know that A− λ I is one-to-one. That Â− λI is one-to-one then follows from
(1) and the fact that U and U−1 are one-to-one.

To prove that ran(Â− λI) is dense in H2, pick any x̂ ∈ H2 and any ε > 0. Set x = U−1 x̂. Since
ran(A − λI) is dense in H1, there exists a z ∈ H1 such that ||(A − λ I) z − x|| < ε. Set ẑ = U z.
Then

||(Â− λ I) ẑ − x̂|| = ||U (A− λ I) U−1 ẑ − U x|| = ||U (
(A− λ I) z − x

)|| = ||(A− λ I) z − x|| < ε.

We have proved that σc(A) ⊆ σc(Â). The proof that σc(Â) ⊆ σc(A) is analogous.



Problem 2: Let δ ∈ S∗(R) denote the Dirac δ-function. Define T ∈ S∗(R) via T (x) =
sin(nx) δ′(x) where n is an integer, and define ϕ ∈ S(R) via ϕ(x) = (A + B x) e−x2

where A
and B are real numbers. Evaluate 〈δ′, ϕ〉 and 〈T, ϕ〉. (5p)

Solution:

〈δ′, ϕ〉 = −〈δ, ϕ′〉 = −ϕ′(0) = −B.

〈T, ϕ〉 = 〈sin(nx) δ′, ϕ〉 = 〈δ′, sin(nx) ϕ〉 = −〈δ, d

dx

(
sin(nx) ϕ

)〉 =

− 〈δ, n cos(nx) ϕ + sin(nx) ϕ′〉 = −nϕ(0) = −nA.



Problem 3: Set H = L2(I) where I = [−1, 1] and let ψ be the function

ψ(x) =




−1 x = −1
1 + x x ∈ (−1, 0)
1 x ∈ [0, 1].

Define A ∈ B(H) by [Au](x) = ψ(x)u(x). Draw a graph of ψ. Determine σ(A), σp(A), σc(A),
and σr(A). No motivation required. (8p)

Solution: The answer is:

σ(A) = [0, 1]

σp(A) = {1}
σc(A) = [1, 0)

σr(A) = ∅
A (non-required) motivation:

If λ /∈ [0, 1], then the operator T defined by [T u](x) = 1
ψ(x)−λ u(x) is a bounded linear operator

that is the inverse of A− λI. (Note that it does not matter that 1/(ψ(x) + 1) blows up at a single
point when λ = −1 since an L2 function does not change when its value is changed at a single
point.) It follows that σ(A) ⊆ [0, 1].

Next we determine σp(A). If u satisfies the equation (A− λ I) u = 0, then

(2) (ψ(x)− λ) u(x) = 0.

If λ 6= 1, then (2) implies that u = 0 (except for possibly at a single point, but again, this does not
change an L2 function) so λ /∈ σp(A). If λ = 1, then any function that is supported in the interval
[0, 1] satisfies (2). It follows that σp(A) = {1}.
We will finally prove that if λ ∈ [0, 1), then λ ∈ σc(A). We have already proven that then
λ /∈ σp(A) so A − λ I is one-to-one. To see that A − λI is not onto, simply note that the
constant function 1 belongs to L2(I), but the equation (ψ(x) − λ) u(x) = 1 does not have a
solution u ∈ L2(I). To finally prove that (A − λ I) is dense, note that for any ε > 0, the set
Hε = {u ∈ H : u(x) = 0 when |x− λ| ≤ ε} belongs to ran(A− λI), and that

∞⋃

n=1

H1/n = L2(I).



Problem 4: Let A be a bounded self-adjoint operator on a Hilbert space A. Consider the following
statements:

(a) If λ ∈ σ(A), then the imaginary part of λ is zero.

(b) The residual spectrum of A is empty.

(c) If M is an invariant subspace of A, then so is M⊥.

(d) The continuous spectrum of A is either empty or consists of the single point 0.

(e) ||A|| = sup
||x||=1

|〈Ax, x〉|.

(f) If λ and µ are two different eigenvalues of A, then ker(A− λ I) ⊆ (
ker(A− µ I)

)⊥.

For each of the six statements, mark whether it is true or false. (2p) for each correct answer.

Extra credit: Pick at most two of the statements (4a) – (4f) and either prove them, or give a
counterexample. (2p) for each correct proof/counterexample.

Solution:

(a) TRUE. See Lemma 9.13 in the book for the proof.

(b) TRUE. If λ ∈ σr(A), then (see Problem 1b!) λ̄ ∈ σp(A∗) = σp(A). Since λ must be real, it
follows that λ must belong to both σr(A) and σp(A) which is impossible.

(c) TRUE. Suppose that M is an invariant subspace and that x ∈ M⊥. We need to prove that
Ax ∈ M⊥ which is the same as saying that 〈Ax, y〉 = 0 for all y ∈ M . But this must be the case
since
(i) 〈Ax, y〉 = 〈x, A y〉
(ii) Ay ∈ M
(iii) x ∈ M⊥.

(d) FALSE. The operator A in Problem 3 is one counterexample. (Note that if A is self-adjoint
and compact, then (d) would be true.)

(e) TRUE. See Lemma 8.26 in the book.

(f) TRUE. Suppose that λ and µ are two different eigenvalues, that u ∈ ker(A − λ I), and that
v ∈ ker(A− µ I). Then Au = λu and Av = λ v. Noting that both λ and µ must be real, we find
that

λ〈u, v〉 = 〈λu, v〉 = 〈Au, v〉 = 〈u, A v〉 = 〈u, µ v〉 = µ〈u, v〉.
It follows that (λ− µ) 〈u, v〉 = 0, and since λ 6= µ, we must have 〈u, v〉 = 0.



Problem 5: Consider the map T : S(R) → C defined via 〈T, ϕ〉 = lim
ε↘0

∫

|x|≥ε

1
x

ϕ(x) dx.

(a) Prove that T is continuous. (4p)

(b) Prove that T ′ is given by 〈T ′, ϕ〉 = lim
ε↘0

(
−

∫

|x|≥ε

1
x2

ϕ(x) dx +
2ϕ(0)

ε

)
. (4p)

Solution:

(a) First we reformulate the definition of T :

(3) 〈T, ϕ〉 = lim
ε↘0

∫

|x|≥ε

1
x

ϕ(x) dx = lim
ε↘0

∫ ∞

ε

ϕ(x)− ϕ(−x)
x

dx =
∫ ∞

0

ϕ(x)− ϕ(−x)
x

dx.

Next note that

(4)
∣∣∣∣
ϕ(x)− ϕ(−x)

x

∣∣∣∣ =
∣∣∣∣
1
x

∫ x

−x
ϕ′(y) dy

∣∣∣∣ ≤
1
|x|

∫ x

−x
|ϕ′(y)| dy ≤ 1

|x| 2 |x| ||ϕ
′||u = 2 ||ϕ||1,0,

and that, when x ≥ 1,

(5)
∣∣∣∣
ϕ(x)− ϕ(−x)

x

∣∣∣∣ ≤
1
|x|

(|ϕ(x)|+ |ϕ(−x)|) =
1
x2

(|xϕ(x)|+ |xϕ(−x)|) ≤ 1
x2

2 ||ϕ||0,1.

Combining (3), (4), and (5), we obtain

|〈T, ϕ〉| ≤
∫ 1

0

∣∣∣∣
ϕ(x)− ϕ(−x)

x

∣∣∣∣ dx +
∫ ∞

1

∣∣∣∣
ϕ(x)− ϕ(−x)

x

∣∣∣∣ dx

≤
∫ 1

0
2 ||ϕ||1,0 dx +

∫ ∞

1

1
x2

2 ||ϕ||0,1 dx = 2 (||ϕ||1,0 + ||ϕ||0,1).

(b) Using the definition of a distributional derivative and partial integration we obtain:

〈T ′, ϕ〉 = −〈T, ϕ′〉 = − lim
ε↘0

(∫ −ε

−∞

1
x

ϕ′(x) dx +
∫ ∞

ε

1
x

ϕ′(x) dx

)

= − lim
ε↘0

([
1
x

ϕ(x)
]−ε

−∞
+

∫ −ε

−∞

1
x2

ϕ(x) dx +
[

1
x

ϕ(x)
]∞

ε

+
∫ ∞

ε

1
x2

ϕ(x) dx

)

= − lim
ε↘0

(
ϕ(−ε)
−ε

+
∫ −ε

−∞

1
x2

ϕ(x) dx− ϕ(ε)
ε

+
∫ ∞

ε

1
x2

ϕ(x) dx

)

= − lim
ε↘0

(∫ −ε

−∞

1
x2

ϕ(x) dx +
∫ ∞

ε

1
x2

ϕ(x) dx− 2ϕ(0)
ε

)


