Applied Analysis (APPM 5450): Midterm 2 - Solutions

$11.35 \mathrm{am}-12.50 \mathrm{pm}$, Mar 19, 2008. Closed books.
Problem 1: Let H_{1} and H_{2} be Hilbert spaces, and let $A \in \mathcal{B}\left(H_{1}\right)$. Suppose further that $U \in$ $\mathcal{B}\left(H_{1}, H_{2}\right)$ is a unitary map.
(a) Define the following sets: $\rho(A), \sigma(A), \sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A), \sigma_{\mathrm{r}}(A)$. (4p)
(b) Prove that if $\lambda \in \sigma_{\mathrm{r}}(A)$, then $\bar{\lambda} \in \sigma_{\mathrm{p}}\left(A^{*}\right)$. (3p)
(c) Define the operator $\hat{A} \in \mathcal{B}\left(H_{2}\right)$ by $\hat{A}=U A U^{-1}$. Prove that $\sigma_{\mathrm{p}}(A)=\sigma_{\mathrm{p}}(\hat{A}) .(2 \mathrm{p})$
(d) Define the operator $\hat{A} \in \mathcal{B}\left(H_{2}\right)$ by $\hat{A}=U A U^{-1}$. Prove that $\sigma_{\mathrm{c}}(A)=\sigma_{\mathrm{c}}(\hat{A})$. (2p)

Solution:

(a) See the text book - Definitions 9.3 and 9.4.
(b) See the text book - Proposition 9.12.
(c) Note that

$$
\begin{equation*}
\hat{A}-\lambda I=U A U^{-1}-\lambda U U^{-1}=U(A-\lambda I) U^{-1} \tag{1}
\end{equation*}
$$

Since U and U^{-1} are both one-to-one, it follows that:

$$
\lambda \notin \sigma_{\mathrm{p}}(A) \quad \Leftrightarrow \quad \operatorname{ker}(A-\lambda I)=\{0\} \quad \Leftrightarrow \quad \operatorname{ker}(\hat{A}-\lambda I)=\{0\} \quad \Leftrightarrow \quad \lambda \notin \sigma_{\mathrm{p}}(\hat{A})
$$

(d) Suppose that $\lambda \in \sigma_{\mathrm{c}}(A)$. We will prove that then $\lambda \in \sigma_{\mathrm{c}}(\hat{A})$.

Since $\lambda \in \sigma_{\mathrm{c}}(A)$, we know that $A-\lambda I$ is one-to-one. That $\hat{A}-\lambda I$ is one-to-one then follows from (1) and the fact that U and U^{-1} are one-to-one.

To prove that $\operatorname{ran}(\hat{A}-\lambda I)$ is dense in H_{2}, pick any $\hat{x} \in H_{2}$ and any $\varepsilon>0$. Set $x=U^{-1} \hat{x}$. Since $\operatorname{ran}(A-\lambda I)$ is dense in H_{1}, there exists a $z \in H_{1}$ such that $\|(A-\lambda I) z-x\|<\varepsilon$. Set $\hat{z}=U z$. Then

$$
\|(\hat{A}-\lambda I) \hat{z}-\hat{x}\|=\left\|U(A-\lambda I) U^{-1} \hat{z}-U x\right\|=\|U((A-\lambda I) z-x)\|=\|(A-\lambda I) z-x\|<\varepsilon .
$$

We have proved that $\sigma_{\mathrm{c}}(A) \subseteq \sigma_{\mathrm{c}}(\hat{A})$. The proof that $\sigma_{\mathrm{c}}(\hat{A}) \subseteq \sigma_{\mathrm{c}}(A)$ is analogous.

Problem 2: Let $\delta \in \mathcal{S}^{*}(\mathbb{R})$ denote the Dirac δ-function. Define $T \in \mathcal{S}^{*}(\mathbb{R})$ via $T(x)=$ $\sin (n x) \delta^{\prime}(x)$ where n is an integer, and define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x)=(A+B x) e^{-x^{2}}$ where A and B are real numbers. Evaluate $\left\langle\delta^{\prime}, \varphi\right\rangle$ and $\langle T, \varphi\rangle$. (5p)

Solution:

$$
\left\langle\delta^{\prime}, \varphi\right\rangle=-\left\langle\delta, \varphi^{\prime}\right\rangle=-\varphi^{\prime}(0)=-B
$$

$$
\begin{aligned}
\langle T, \varphi\rangle=\left\langle\sin (n x) \delta^{\prime}, \varphi\right\rangle=\left\langle\delta^{\prime}, \sin (n x) \varphi\right\rangle= & -\left\langle\delta, \frac{d}{d x}(\sin (n x) \varphi)\right\rangle= \\
& -\left\langle\delta, n \cos (n x) \varphi+\sin (n x) \varphi^{\prime}\right\rangle=-n \varphi(0)=-n A
\end{aligned}
$$

Problem 3: Set $H=L^{2}(I)$ where $I=[-1,1]$ and let ψ be the function

$$
\psi(x)= \begin{cases}-1 & x=-1 \\ 1+x & x \in(-1,0) \\ 1 & x \in[0,1]\end{cases}
$$

Define $A \in \mathcal{B}(H)$ by $[A u](x)=\psi(x) u(x)$. Draw a graph of ψ. Determine $\sigma(A), \sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$. No motivation required. (8p)

Solution: The answer is:
$\sigma(A)=[0,1]$
$\sigma_{\mathrm{p}}(A)=\{1\}$
$\sigma_{\mathrm{c}}(A)=[1,0)$
$\sigma_{\mathrm{r}}(A)=\emptyset$
A (non-required) motivation:
If $\lambda \notin[0,1]$, then the operator T defined by $[T u](x)=\frac{1}{\psi(x)-\lambda} u(x)$ is a bounded linear operator that is the inverse of $A-\lambda I$. (Note that it does not matter that $1 /(\psi(x)+1)$ blows up at a single point when $\lambda=-1$ since an L^{2} function does not change when its value is changed at a single point.) It follows that $\sigma(A) \subseteq[0,1]$.

Next we determine $\sigma_{\mathrm{p}}(A)$. If u satisfies the equation $(A-\lambda I) u=0$, then

$$
\begin{equation*}
(\psi(x)-\lambda) u(x)=0 . \tag{2}
\end{equation*}
$$

If $\lambda \neq 1$, then (2) implies that $u=0$ (except for possibly at a single point, but again, this does not change an L^{2} function) so $\lambda \notin \sigma_{\mathrm{p}}(A)$. If $\lambda=1$, then any function that is supported in the interval $[0,1]$ satisfies (2). It follows that $\sigma_{\mathrm{p}}(A)=\{1\}$.

We will finally prove that if $\lambda \in[0,1)$, then $\lambda \in \sigma_{\mathrm{c}}(A)$. We have already proven that then $\lambda \notin \sigma_{\mathrm{p}}(A)$ so $A-\lambda I$ is one-to-one. To see that $A-\lambda I$ is not onto, simply note that the constant function 1 belongs to $L^{2}(I)$, but the equation $(\psi(x)-\lambda) u(x)=1$ does not have a solution $u \in L^{2}(I)$. To finally prove that $(A-\lambda I)$ is dense, note that for any $\varepsilon>0$, the set $H_{\varepsilon}=\{u \in H: u(x)=0$ when $|x-\lambda| \leq \varepsilon\}$ belongs to $\operatorname{ran}(A-\lambda I)$, and that

$$
\bigcup_{n=1}^{\infty} H_{1 / n}=L^{2}(I) .
$$

Problem 4: Let A be a bounded self-adjoint operator on a Hilbert space A. Consider the following statements:
(a) If $\lambda \in \sigma(A)$, then the imaginary part of λ is zero.
(b) The residual spectrum of A is empty.
(c) If M is an invariant subspace of A, then so is M^{\perp}.
(d) The continuous spectrum of A is either empty or consists of the single point 0 .
(e) $\|A\|=\sup _{\|x\|=1}|\langle A x, x\rangle|$.
(f) If λ and μ are two different eigenvalues of A, then $\operatorname{ker}(A-\lambda I) \subseteq(\operatorname{ker}(A-\mu I))^{\perp}$.

For each of the six statements, mark whether it is true or false. (2p) for each correct answer.
Extra credit: Pick at most two of the statements (4a) - (4f) and either prove them, or give a counterexample. (2p) for each correct proof/counterexample.

Solution:

(a) TRUE. See Lemma 9.13 in the book for the proof.
(b) TRUE. If $\lambda \in \sigma_{\mathrm{r}}(A)$, then (see Problem 1b!) $\bar{\lambda} \in \sigma_{\mathrm{p}}\left(A^{*}\right)=\sigma_{\mathrm{p}}(A)$. Since λ must be real, it follows that λ must belong to both $\sigma_{\mathrm{r}}(A)$ and $\sigma_{\mathrm{p}}(A)$ which is impossible.
(c) TRUE. Suppose that M is an invariant subspace and that $x \in M^{\perp}$. We need to prove that $A x \in M^{\perp}$ which is the same as saying that $\langle A x, y\rangle=0$ for all $y \in M$. But this must be the case since
(i) $\langle A x, y\rangle=\langle x, A y\rangle$
(ii) $A y \in M$
(iii) $x \in M^{\perp}$.
(d) FALSE. The operator A in Problem 3 is one counterexample. (Note that if A is self-adjoint and compact, then (d) would be true.)
(e) TRUE. See Lemma 8.26 in the book.
(f) TRUE. Suppose that λ and μ are two different eigenvalues, that $u \in \operatorname{ker}(A-\lambda I)$, and that $v \in \operatorname{ker}(A-\mu I)$. Then $A u=\lambda u$ and $A v=\lambda v$. Noting that both λ and μ must be real, we find that

$$
\lambda\langle u, v\rangle=\langle\lambda u, v\rangle=\langle A u, v\rangle=\langle u, A v\rangle=\langle u, \mu v\rangle=\mu\langle u, v\rangle .
$$

It follows that $(\lambda-\mu)\langle u, v\rangle=0$, and since $\lambda \neq \mu$, we must have $\langle u, v\rangle=0$.

Problem 5: Consider the map $T: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via $\langle T, \varphi\rangle=\lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x$.
(a) Prove that T is continuous. (4p)
(b) Prove that T^{\prime} is given by $\left\langle T^{\prime}, \varphi\right\rangle=\lim _{\varepsilon \searrow 0}\left(-\int_{|x| \geq \varepsilon} \frac{1}{x^{2}} \varphi(x) d x+\frac{2 \varphi(0)}{\varepsilon}\right)$.

Solution:

(a) First we reformulate the definition of T :

$$
\begin{equation*}
\langle T, \varphi\rangle=\lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x=\lim _{\varepsilon \searrow 0} \int_{\varepsilon}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x=\int_{0}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x \tag{3}
\end{equation*}
$$

Next note that

$$
\begin{equation*}
\left|\frac{\varphi(x)-\varphi(-x)}{x}\right|=\left|\frac{1}{x} \int_{-x}^{x} \varphi^{\prime}(y) d y\right| \leq \frac{1}{|x|} \int_{-x}^{x}\left|\varphi^{\prime}(y)\right| d y \leq \frac{1}{|x|} 2|x|\left\|\varphi^{\prime}\right\|_{\mathrm{u}}=2\|\varphi\|_{1,0} \tag{4}
\end{equation*}
$$

and that, when $x \geq 1$,

$$
\begin{equation*}
\left|\frac{\varphi(x)-\varphi(-x)}{x}\right| \leq \frac{1}{|x|}(|\varphi(x)|+|\varphi(-x)|)=\frac{1}{x^{2}}(|x \varphi(x)|+|x \varphi(-x)|) \leq \frac{1}{x^{2}} 2\|\varphi\|_{0,1} . \tag{5}
\end{equation*}
$$

Combining (3), (4), and (5), we obtain

$$
\begin{aligned}
|\langle T, \varphi\rangle| \leq \int_{0}^{1}\left|\frac{\varphi(x)-\varphi(-x)}{x}\right| d x & +\int_{1}^{\infty}\left|\frac{\varphi(x)-\varphi(-x)}{x}\right| d x \\
& \leq \int_{0}^{1} 2\|\varphi\|_{1,0} d x+\int_{1}^{\infty} \frac{1}{x^{2}} 2\|\varphi\|_{0,1} d x=2\left(\|\varphi\|_{1,0}+\|\varphi\|_{0,1}\right)
\end{aligned}
$$

(b) Using the definition of a distributional derivative and partial integration we obtain:

$$
\begin{array}{r}
\left\langle T^{\prime}, \varphi\right\rangle=-\left\langle T, \varphi^{\prime}\right\rangle=-\lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi^{\prime}(x) d x+\int_{\varepsilon}^{\infty} \frac{1}{x} \varphi^{\prime}(x) d x\right) \\
=-\lim _{\varepsilon \searrow 0}\left(\left[\frac{1}{x} \varphi(x)\right]_{-\infty}^{-\varepsilon}+\int_{-\infty}^{-\varepsilon} \frac{1}{x^{2}} \varphi(x) d x+\left[\frac{1}{x} \varphi(x)\right]_{\varepsilon}^{\infty}+\int_{\varepsilon}^{\infty} \frac{1}{x^{2}} \varphi(x) d x\right) \\
=-\lim _{\varepsilon \searrow 0}\left(\frac{\varphi(-\varepsilon)}{-\varepsilon}+\int_{-\infty}^{-\varepsilon} \frac{1}{x^{2}} \varphi(x) d x-\frac{\varphi(\varepsilon)}{\varepsilon}+\int_{\varepsilon}^{\infty} \frac{1}{x^{2}} \varphi(x) d x\right) \\
=-\lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon} \frac{1}{x^{2}} \varphi(x) d x+\int_{\varepsilon}^{\infty} \frac{1}{x^{2}} \varphi(x) d x-\frac{2 \varphi(0)}{\varepsilon}\right)
\end{array}
$$

