Applied Analysis (APPM 5450): Midterm 2

11.35am - 12.50pm, Mar 19, 2008. Closed books.

Problem 1: Let H_1 and H_2 be Hilbert spaces, and let $A \in \mathcal{B}(H_1)$. Suppose further that $U \in \mathcal{B}(H_1, H_2)$ is a unitary map.

- (a) Define the following sets: $\rho(A)$, $\sigma(A)$, $\sigma_{\rm p}(A)$, $\sigma_{\rm c}(A)$, $\sigma_{\rm r}(A)$. (4p)
- (b) Prove that if $\lambda \in \sigma_{\mathbf{r}}(A)$, then $\overline{\lambda} \in \sigma_{\mathbf{p}}(A^*)$. (3p)
- (c) Define the operator $\hat{A} \in \mathcal{B}(H_2)$ by $\hat{A} = U A U^{-1}$. Prove that $\sigma_p(A) = \sigma_p(\hat{A})$. (2p)
- (d) Define the operator $\hat{A} \in \mathcal{B}(H_2)$ by $\hat{A} = U A U^{-1}$. Prove that $\sigma_c(A) = \sigma_c(\hat{A})$. (2p)

Problem 2: Let $\delta \in \mathcal{S}^*(\mathbb{R})$ denote the Dirac δ -function. Define $T \in \mathcal{S}^*(\mathbb{R})$ via $T(x) = \sin(nx)\delta'(x)$ where *n* is an integer, and define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x) = (A + Bx)e^{-x^2}$ where *A* and *B* are real numbers. Evaluate $\langle \delta', \varphi \rangle$ and $\langle T, \varphi \rangle$. (5p)

Problem 3: Set $H = L^2(I)$ where I = [-1, 1] and let ψ be the function

$$\psi(x) = \begin{cases} -1 & x = -1\\ 1+x & x \in (-1, 0)\\ 1 & x \in [0, 1]. \end{cases}$$

Define $A \in \mathcal{B}(H)$ by $[A u](x) = \psi(x) u(x)$. Draw a graph of ψ . Determine $\sigma(A)$, $\sigma_p(A)$, $\sigma_c(A)$, and $\sigma_r(A)$. No motivation required. (8p)

Problem 4: Let *A* be a bounded self-adjoint operator on a Hilbert space *A*. Consider the following statements:

- (a) If $\lambda \in \sigma(A)$, then the imaginary part of λ is zero.
- (b) The residual spectrum of A is empty.
- (c) If M is an invariant subspace of A, then so is M^{\perp} .
- (d) The continuous spectrum of A is either empty or consists of the single point 0.
- (e) $||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|.$
- (f) If λ and μ are two different eigenvalues of A, then $\ker(A \lambda I) \subseteq (\ker(A \mu I))^{\perp}$.

For each of the six statements, mark whether it is true or false. (2p) for each correct answer.

Extra credit: Pick at most two of the statements (4a) - (4f) and either prove them, or give a counterexample. (2p) for each correct proof/counterexample.

Problem 5: Consider the map $T: \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ defined via $\langle T, \varphi \rangle = \lim_{\varepsilon \searrow 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \varphi(x) dx.$

(a) Prove that T is continuous. (4p)

(b) Prove that
$$T'$$
 is given by $\langle T', \varphi \rangle = \lim_{\varepsilon \searrow 0} \left(-\int_{|x| \ge \varepsilon} \frac{1}{x^2} \varphi(x) \, dx + \frac{2 \varphi(0)}{\varepsilon} \right).$ (4p)