Applied Analysis (APPM 5450): Midterm 1

11.35am - 12.50pm, Feb. 18, 2008. Closed books.

Problem 1: Let *H* be a Hilbert space with an ON-basis $(\varphi_j)_{j=1}^{\infty}$, and let $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}, (z_n)_{n=1}^{\infty}, (u_n)_{n=1}^{\infty}, (v_n)_{n=1}^{\infty}, and (w_n)_{n=1}^{\infty}$ be sequences in *H* for which you know the following:

 $\langle x_n, x_m \rangle = 0$ if $m \neq n$ and $\langle x_n, x_n \rangle = 1$.

 $||y_n|| = 1$

 $\limsup_{n\to\infty}||z_n||=\infty$

 $||u_n|| = 1/n$ and $\lim_{n \to \infty} \langle \varphi_j, u_n \rangle = 0$ for every j.

 $\lim_{n \to \infty} \langle \varphi_j, v_n \rangle = 0 \text{ for every } j.$

There exists a $w \in H$ such that $||w_n|| \to ||w||$ and $\lim_{n \to \infty} \langle \varphi_j, w_n \rangle = \langle \varphi_j, w \rangle$ for every j.

Solution:

	x_n	y_n	z_n	u_n	v_n	w_n
(1) Necessarily converges strongly.						
(2) Does not converge strongly.	2	3	2	1	3	1
(3) May or may not converge strongly.						
(1) Necessarily has a strongly convergent subsequence.						
(2) Does not have a strongly convergent subsequence.	2	3	3	1	3	1
(3) May or may not have a strongly convergent subsequence.						
(1) Necessarily converges weakly.						
(2) Does not converge weakly.	1	3	2	1	3	1
(3) May or may not converge weakly.						
(1) Necessarily has a weakly convergent subsequence.						
(2) Does not have a weakly convergent subsequence.	1	1	3	1	3	1
(3) May or may not have a weakly convergent subsequence.						

Some (non-required!) comments:

 (x_n) is an ON-sequence. It converges weakly to zero but does not converge strongly.

 (y_n) necessarily has a weakly convergent subsequence since the unit ball in a Hilbert space is weakly compact.

 (z_n) itself cannot converge either weakly or strongly since it has a subsequence (z_{n_j}) such that $\lim_{j\to\infty} ||z_{n_j}|| = \infty$. However, it may have convergent sequences interlaced.

The condition $||u_n|| \to 0$ by itself implies that $u_n \to 0$ strongly (and hence weakly as well).

You cannot say anything. Both the sequence $v_n = n \varphi_n$ (which does not have any convergent subsequences) and the sequence $v_n = 0$ satisfy the given condition.

 (w_n) is weakly convergent since it is a bounded sequence that converges "componentwise". Moreover, it must be that $w_n \rightharpoonup w$, and since in addition $||w_n|| \rightarrow ||w||$ strong convergence follows. **Problem 2:** Set $I = [-\pi/2, \pi]$ and consider the Hilbert space $H = L^2(I)$.

(a) Set $\varphi_n(x) = \sin(nx)$ and prove that the set $\mathcal{P} = \operatorname{span}(\varphi_n)_{n=1}^{\infty}$ is not dense in H. (3p)

(b) Set $e_n(x) = e^{i n x} / \sqrt{2\pi}$ and prove that the set $(e_n)_{n=-\infty}^{\infty}$ is linearly dependent in the sense that there exists a sequence of complex numbers $(\alpha_n)_{n=-\infty}^{\infty}$ such that

$$0 < \sum_{n=-\infty}^{\infty} |\alpha_n|^2 < \infty \quad \text{and} \quad \lim_{N \to \infty} ||\sum_{n=-N}^{N} \alpha_n e_n||_{L^2(I)} = 0.$$

(4p)

(c) Provide an ON-basis for H. (3p)

Solution:

(a) Set $\psi = \chi_{[-1/2,1/2]}$. Then $\langle \varphi_n, \psi \rangle = \int_{-1/2}^{1/2} \sin(nx) dx = 0$ so $\psi \in \mathcal{P}^{\perp}$. Consequently, for any $\varphi \in \mathcal{P}$, we have $||\psi - \varphi|| = \sqrt{||\psi||^2 + ||\varphi||^2} \ge ||\psi|| = 1$.

(b) Set $\psi = \chi_{[-\pi, -\pi/2]}$, and set

$$\alpha_n = \langle e_n, \psi \rangle_{L^2([-\pi,\pi])} = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{-\pi/2} e^{-i\,n\,x} \, dx.$$

Since (e_n) is an ON-basis for $L^2([-\pi,\pi])$, we have $\sum |\alpha_n|^2 = ||\psi||^2_{L^2([-\pi,\pi])} = \pi/2$.

Next, set $\psi_N = \sum_{n=-N}^N \alpha_n e_n$. Then

$$\begin{aligned} ||\sum_{n=-N}^{N} \alpha_n e_n||_{L^2(I)}^2 &= \int_{-\pi/2}^{\pi} |\psi_N(x)|^2 \, dx = \int_{-\pi/2}^{\pi} |\psi_N(x) - \psi(x)|^2 \, dx \\ &\leq \int_{-\pi}^{\pi} |\psi_N(x) - \psi(x)|^2 \, dx = ||\psi_N - \psi||_{L^2([-\pi,\pi])}^2 \to 0. \end{aligned}$$

(c) There are many choices. For instance:

$$\{A_n \sin(n(2/3)(x+\pi/2))\}_{n=1}^{\infty}, \quad \text{where} \quad A_n = \frac{1}{||\sin(n(2/3)(x+\pi/2))||_{L^2(I)}}$$

$$\{B_n e^{in(4/3)(x-\pi/4)}\}_{n=-\infty}^{\infty}, \quad \text{where} \quad B_n = \frac{1}{||e^{in(4/3)(x-\pi/4)}||_{L^2(I)}} = \sqrt{\frac{2}{3\pi}}$$

$$\{C_n e^{in(4/3)x}\}_{n=-\infty}^{\infty}, \quad \text{where} \quad C_n = \frac{1}{||e^{in(4/3)x}||_{L^2(I)}} = \sqrt{\frac{2}{3\pi}}$$

Problem 3: Let $(\lambda_n)_{n=-\infty}^{\infty}$ denote a bounded sequence of complex numbers and consider the map (1) $A: L^2(\mathbb{T}) \to l^2(\mathbb{Z}): u \mapsto v = (\dots, v_{-1}, v_0, v_1, \dots)$ where $v_n = \lambda_n \langle e_n, u \rangle$.

In (1), e_n denotes the Fourier basis for $L^2(\mathbb{T})$, $e_n(x) = e^{i n x} / \sqrt{2 \pi}$.

- (a) Prove that $||A|| = \sup_n |\lambda_n|$. (4p)
- (b) Let $\mathcal{F} : L^2(\mathbb{T}) \to l^2(\mathbb{Z})$ denote the Fourier transform. Complete the following sentences: $\mathcal{F}^{-1}A$ is *self-adjoint* if and only if every number λ_n satisfies ...
 - $\mathcal{F}^{-1}A$ is unitary if and only if every number λ_n satisfies ...

Motivate briefly. (6p)

Solution:

(a) Set $M = \sup |\lambda_n|$. Then

$$||A u||^2 = \sum_n |\lambda_n \langle e_n, u \rangle|^2 \le \sum_n M^2 |\langle e_n, u \rangle|^2 = ||u||^2,$$

so $||A|| \leq M$. Conversely,

$$||A|| = \sup_{||u||=1} ||A u|| \ge \sup_{n} ||A e_{n}|| = \sup_{n} |\lambda_{n}| = M.$$

(b) We have

$$[\mathcal{F}^{-1}A] u = \sum_{n} \lambda_n \langle u, e_n \rangle e_n.$$

It is clear that

$$\left[(\mathcal{F}^{-1} A)^* \right] u = \sum_n \bar{\lambda}_n \left\langle u, \, e_n \right\rangle e_n,$$

so $\mathcal{F}^{-1}A$ is self-adjoint iff $\overline{\lambda}_n = \lambda_n$ (which is to say, iff λ_n is real for all n).

Similarly: $\mathcal{F}^{-1}A$ is unitary iff $(\mathcal{F}^{-1}A)^* = (\mathcal{F}^{-1}A)^{-1}$. It follows that $\mathcal{F}^{-1}A$ is unitary $\Leftrightarrow \quad \bar{\lambda}_n = \lambda_n^{-1} \forall n \quad \Leftrightarrow \quad |\lambda_n| = 1 \forall n.$ **Problem 4:** Recall that for an $n \times n$ matrix A it is the case that

 $\operatorname{ran}(A) = \ker(A^*)^{\perp}.$ (2)

Now consider the Hilbert space $H = L^2([-\pi, \pi])$ and the operator

$$[A u](x) = x e^{ix} u(x).$$

- (a) Construct A^* and prove that (2) does not hold for A. (6p)
- (b) Determine ||A||. (4p)

Solution:

(a) First we note that

$$\langle A\,u,\,v\rangle = \int \overline{x\,e^{i\,x}\,u(x)}\,v(x)\,dx = \int \overline{u(x)}\,(x\,e^{-i\,x}\,v(x))\,dx = \langle u,\,A^*\,v\rangle,$$

with

$$[A^*v](x) = x e^{-ix} v(x).$$

 $[A^*v](x) = x e^{-ix} v(x).$ It is immediately clear that ker(A^{*}) = {0} so ker(A^{*})[⊥] = H.

However, A is not onto. To see this, note that the constant function 1 belongs to H, but the equation Au = 1 does not have a solution in H. It follows that (2) does not hold.

(b) First we note that

$$||A u||^{2} = \int |x, e^{ix} u(x)|^{2} dx \le \int \pi^{2} |u(x)|^{2} dx = \pi^{2} ||u||^{2}$$

It follows that $||A|| \leq \pi$. To prove the converse, consider the functions

$$u_n = \sqrt{n} \, \chi_{[\pi - 1/n, \, \pi]}.$$

We have $||u_n|| = 1$ and so

$$||A||^{2} = \sup_{||u||=1} ||A u||^{2} \ge \sup_{n} ||A u_{n}||^{2} = \sup_{n} \int_{\pi-1/n}^{\pi} |x e^{ix} \sqrt{n}|^{2} dx$$
$$\ge \sup_{n} \int_{\pi-1/n}^{\pi} (\pi - 1/n)^{2} n \, dx = \sup_{n} (\pi - 1/n)^{2} = \pi^{2}.$$

Problem 5: Let H_1 and H_2 be Hilbert spaces.

(a) Define what it means for a map $U \in \mathcal{B}(H_1, H_2)$ to be unitary. (2p)

(b) Suppose that $A \in \mathcal{B}(H_1, H_2)$, that A is onto, and that ||A u|| = ||u|| for all $u \in H_1$. Is A necessarily unitary? Motivate briefly. (2p)

Solution:

(a) A map $U \in \mathcal{B}(H_1, H_2)$ is *unitary* if it is bijective and

$$\langle U x, U y \rangle_{H_2} = \langle x, y \rangle_{H_1} \qquad \forall x, y \in H_1.$$

(b) Suppose that A is an isometry and is onto. Since A is an isometry, it follows that A is one-to-one, and hence bijective. To see that A preserves the inner product, simply use a spectral identity:

$$\langle U\,x,\,U\,y\rangle_{H_2} = \frac{1}{4} \left(||U\,x + U\,y||_{H_2}^2 - ||U\,x - U\,y||_{H_2}^2 - i\,||U\,x + i\,U\,y||_{H_2}^2 + i\,||U\,x - i\,U\,y||_{H_2}^2 \right) \\ \frac{1}{4} \left(||x + y||_{H_1}^2 - ||x - y||_{H_1}^2 - i\,||x + i\,y||_{H_1}^2 + i\,||x - i\,y||_{H_1}^2 \right) = \langle x,\,y\rangle_{H_1}$$