Applied Analysis (APPM 5450): Midterm 1

11.35am - 12.50pm, Feb. 18, 2008. Closed books.

Problem 1: Let H be a Hilbert space with an ON-basis $\left(\varphi_{j}\right)_{j=1}^{\infty}$, and let $\left(x_{n}\right)_{n=1}^{\infty},\left(y_{n}\right)_{n=1}^{\infty},\left(z_{n}\right)_{n=1}^{\infty}$, $\left(u_{n}\right)_{n=1}^{\infty},\left(v_{n}\right)_{n=1}^{\infty}$, and $\left(w_{n}\right)_{n=1}^{\infty}$ be sequences in H for which you know the following:
$\left\langle x_{n}, x_{m}\right\rangle=0$ if $m \neq n$ and $\left\langle x_{n}, x_{n}\right\rangle=1$.
$\left\|y_{n}\right\|=1$
$\limsup _{n \rightarrow \infty}\left\|z_{n}\right\|=\infty$
$\left\|u_{n}\right\|=1 / n$ and $\lim _{n \rightarrow \infty}\left\langle\varphi_{j}, u_{n}\right\rangle=0$ for every j.
$\lim _{n \rightarrow \infty}\left\langle\varphi_{j}, v_{n}\right\rangle=0$ for every j.
There exists a $w \in H$ such that $\left\|w_{n}\right\| \rightarrow\|w\|$ and $\lim _{n \rightarrow \infty}\left\langle\varphi_{j}, w_{n}\right\rangle=\left\langle\varphi_{j}, w\right\rangle$ for every j.

Solution:

	x_{n}	y_{n}	z_{n}	u_{n}	v_{n}	w_{n}
(1) Necessarily converges strongly. (2) Does not converge strongly. (3) May or may not converge strongly.	2	3	2	1	3	1
(1) Necessarily has a strongly convergent subsequence. (2) Does not have a strongly convergent subsequence. (3) May or may not have a strongly convergent subsequence.	2	3	3	1	3	1
(1) Necessarily converges weakly. (2) Does not converge weakly. (3) May or may not converge weakly.	1	3	2	1	3	1
(1) Necessarily has a weakly convergent subsequence. (2) Does not have a weakly convergent subsequence. (3) May or may not have a weakly convergent subsequence.	1	1	3	1	3	1

Some (non-required!) comments:
$\left(x_{n}\right)$ is an ON-sequence. It converges weakly to zero but does not converge strongly.
$\left(y_{n}\right)$ necessarily has a weakly convergent subsequence since the unit ball in a Hilbert space is weakly compact.
$\left(z_{n}\right)$ itself cannot converge either weakly or strongly since it has a subsequence $\left(z_{n_{j}}\right)$ such that $\lim _{j \rightarrow \infty}\left\|z_{n_{j}}\right\|=\infty$. However, it may have convergent sequences interlaced.

The condition $\left\|u_{n}\right\| \rightarrow 0$ by itself implies that $u_{n} \rightarrow 0$ strongly (and hence weakly as well).
You cannot say anything. Both the sequence $v_{n}=n \varphi_{n}$ (which does not have any convergent subsequences) and the sequence $v_{n}=0$ satisfy the given condition.
$\left(w_{n}\right)$ is weakly convergent since it is a bounded sequence that converges "componentwise". Moreover, it must be that $w_{n} \rightharpoonup w$, and since in addition $\left\|w_{n}\right\| \rightarrow\|w\|$ strong convergence follows.

Problem 2: Set $I=[-\pi / 2, \pi]$ and consider the Hilbert space $H=L^{2}(I)$.
(a) Set $\varphi_{n}(x)=\sin (n x)$ and prove that the set $\mathcal{P}=\operatorname{span}\left(\varphi_{n}\right)_{n=1}^{\infty}$ is not dense in H. (3p)
(b) Set $e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$ and prove that the set $\left(e_{n}\right)_{n=-\infty}^{\infty}$ is linearly dependent in the sense that there exists a sequence of complex numbers $\left(\alpha_{n}\right)_{n=-\infty}^{\infty}$ such that

$$
0<\sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty \quad \text { and } \quad \lim _{N \rightarrow \infty}\left\|\sum_{n=-N}^{N} \alpha_{n} e_{n}\right\|_{L^{2}(I)}=0 .
$$

(4p)
(c) Provide an ON-basis for H. (3p)

Solution:

(a) Set $\psi=\chi_{[-1 / 2,1 / 2]}$. Then $\left\langle\varphi_{n}, \psi\right\rangle=\int_{-1 / 2}^{1 / 2} \sin (n x) d x=0$ so $\psi \in \mathcal{P}^{\perp}$. Consequently, for any $\varphi \in \mathcal{P}$, we have $\|\psi-\varphi\|=\sqrt{\|\psi\|^{2}+\|\varphi\|^{2}} \geq\|\psi\|=1$.
(b) Set $\psi=\chi_{[-\pi,-\pi / 2]}$, and set

$$
\alpha_{n}=\left\langle e_{n}, \psi\right\rangle_{L^{2}([-\pi, \pi])}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{-\pi / 2} e^{-i n x} d x
$$

Since $\left(e_{n}\right)$ is an ON-basis for $L^{2}([-\pi, \pi])$, we have $\sum\left|\alpha_{n}\right|^{2}=\|\psi\|_{L^{2}([-\pi, \pi])}^{2}=\pi / 2$.
Next, set $\psi_{N}=\sum_{n=-N}^{N} \alpha_{n} e_{n}$. Then

$$
\begin{aligned}
\left\|\sum_{n=-N}^{N} \alpha_{n} e_{n}\right\|_{L^{2}(I)}^{2}=\int_{-\pi / 2}^{\pi}\left|\psi_{N}(x)\right|^{2} d x & =\int_{-\pi / 2}^{\pi}\left|\psi_{N}(x)-\psi(x)\right|^{2} d x \\
& \leq \int_{-\pi}^{\pi}\left|\psi_{N}(x)-\psi(x)\right|^{2} d x=\left\|\psi_{N}-\psi\right\|_{L^{2}([-\pi, \pi])}^{2} \rightarrow 0
\end{aligned}
$$

(c) There are many choices. For instance:

$$
\begin{aligned}
\left\{A_{n} \sin (n(2 / 3)(x+\pi / 2))\right\}_{n=1}^{\infty}, & \text { where } & A_{n} & =\frac{1}{\|\sin (n(2 / 3)(x+\pi / 2))\|_{L^{2}(I)}} \\
\left\{B_{n} e^{i n(4 / 3)(x-\pi / 4)}\right\}_{n=-\infty}^{\infty}, & \text { where } & B_{n} & =\frac{1}{\left\|e^{i n(4 / 3)(x-\pi / 4)}\right\|_{L^{2}(I)}}=\sqrt{\frac{2}{3 \pi}} \\
\left\{C_{n} e^{i n(4 / 3) x}\right\}_{n=-\infty}^{\infty}, & \text { where } & C_{n} & =\frac{1}{\left\|e^{i n(4 / 3) x}\right\|_{L^{2}(I)}}=\sqrt{\frac{2}{3 \pi}}
\end{aligned}
$$

Problem 3: Let $\left(\lambda_{n}\right)_{n=-\infty}^{\infty}$ denote a bounded sequence of complex numbers and consider the map

$$
\begin{equation*}
A: L^{2}(\mathbb{T}) \rightarrow l^{2}(\mathbb{Z}): u \mapsto v=\left(\ldots, v_{-1}, v_{0}, v_{1}, \ldots\right) \text { where } v_{n}=\lambda_{n}\left\langle e_{n}, u\right\rangle . \tag{1}
\end{equation*}
$$

In (1), e_{n} denotes the Fourier basis for $L^{2}(\mathbb{T}), e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$.
(a) Prove that $\|A\|=\sup _{n}\left|\lambda_{n}\right|$. (4p)
(b) Let $\mathcal{F}: L^{2}(\mathbb{T}) \rightarrow l^{2}(\mathbb{Z})$ denote the Fourier transform. Complete the following sentences:
$\mathcal{F}^{-1} A$ is self-adjoint if and only if every number λ_{n} satisfies \ldots
$\mathcal{F}^{-1} A$ is unitary if and only if every number λ_{n} satisfies ...
Motivate briefly. (6p)

Solution:

(a) Set $M=\sup \left|\lambda_{n}\right|$. Then

$$
\|A u\|^{2}=\sum_{n}\left|\lambda_{n}\left\langle e_{n}, u\right\rangle\right|^{2} \leq \sum_{n} M^{2}\left|\left\langle e_{n}, u\right\rangle\right|^{2}=\|u\|^{2},
$$

so $\|A\| \leq M$. Conversely,

$$
\|A\|=\sup _{\|u\|=1}\|A u\| \geq \sup _{n}\left\|A e_{n}\right\|=\sup _{n}\left|\lambda_{n}\right|=M .
$$

(b) We have

$$
\left[\mathcal{F}^{-1} A\right] u=\sum_{n} \lambda_{n}\left\langle u, e_{n}\right\rangle e_{n} .
$$

It is clear that

$$
\left[\left(\mathcal{F}^{-1} A\right)^{*}\right] u=\sum_{n} \bar{\lambda}_{n}\left\langle u, e_{n}\right\rangle e_{n},
$$

so $\mathcal{F}^{-1} A$ is self-adjoint iff $\bar{\lambda}_{n}=\lambda_{n}$ (which is to say, iff λ_{n} is real for all n).
Similarly: $\mathcal{F}^{-1} A$ is unitary iff $\left(\mathcal{F}^{-1} A\right)^{*}=\left(\mathcal{F}^{-1} A\right)^{-1}$. It follows that

$$
\mathcal{F}^{-1} A \text { is unitary } \Leftrightarrow \bar{\lambda}_{n}=\lambda_{n}^{-1} \forall n \quad \Leftrightarrow \quad\left|\lambda_{n}\right|=1 \forall n .
$$

Problem 4: Recall that for an $n \times n$ matrix A it is the case that

$$
\begin{equation*}
\operatorname{ran}(A)=\operatorname{ker}\left(A^{*}\right)^{\perp} \tag{2}
\end{equation*}
$$

Now consider the Hilbert space $H=L^{2}([-\pi, \pi])$ and the operator

$$
[A u](x)=x e^{i x} u(x) .
$$

(a) Construct A^{*} and prove that (2) does not hold for A. (6p)
(b) Determine $\|A\|$. (4p)

Solution:

(a) First we note that

$$
\langle A u, v\rangle=\int \overline{x e^{i x} u(x)} v(x) d x=\int \overline{u(x)}\left(x e^{-i x} v(x)\right) d x=\left\langle u, A^{*} v\right\rangle
$$

with

$$
\left[A^{*} v\right](x)=x e^{-i x} v(x)
$$

It is immediately clear that $\operatorname{ker}\left(A^{*}\right)=\{0\}$ so $\operatorname{ker}\left(A^{*}\right)^{\perp}=H$.
However, A is not onto. To see this, note that the constant function 1 belongs to H, but the equation $A u=1$ does not have a solution in H. It follows that (2) does not hold.
(b) First we note that

$$
\|A u\|^{2}=\int\left|x, e^{i x} u(x)\right|^{2} d x \leq \int \pi^{2}|u(x)|^{2} d x=\pi^{2}\|u\|^{2}
$$

It follows that $\|A\| \leq \pi$. To prove the converse, consider the functions

$$
u_{n}=\sqrt{n} \chi_{[\pi-1 / n, \pi]}
$$

We have $\left\|u_{n}\right\|=1$ and so

$$
\begin{aligned}
&\|A\|^{2}=\sup _{\|u\|=1}\|A u\|^{2} \geq \sup _{n}\left\|A u_{n}\right\|^{2}=\sup _{n} \int_{\pi-1 / n}^{\pi}\left|x e^{i x} \sqrt{n}\right|^{2} d x \\
& \geq \sup _{n} \int_{\pi-1 / n}^{\pi}(\pi-1 / n)^{2} n d x=\sup _{n}(\pi-1 / n)^{2}=\pi^{2} .
\end{aligned}
$$

Problem 5: Let H_{1} and H_{2} be Hilbert spaces.
(a) Define what it means for a map $U \in \mathcal{B}\left(H_{1}, H_{2}\right)$ to be unitary. (2p)
(b) Suppose that $A \in \mathcal{B}\left(H_{1}, H_{2}\right)$, that A is onto, and that $\|A u\|=\|u\|$ for all $u \in H_{1}$. Is A necessarily unitary? Motivate briefly. (2p)

Solution:

(a) A map $U \in \mathcal{B}\left(H_{1}, H_{2}\right)$ is unitary if it is bijective and

$$
\langle U x, U y\rangle_{H_{2}}=\langle x, y\rangle_{H_{1}} \quad \forall x, y \in H_{1} .
$$

(b) Suppose that A is an isometry and is onto. Since A is an isometry, it follows that A is one-to-one, and hence bijective. To see that A preserves the inner product, simply use a spectral identity:

$$
\begin{array}{r}
\langle U x, U y\rangle_{H_{2}}=\frac{1}{4}\left(\|U x+U y\|_{H_{2}}^{2}-\|U x-U y\|_{H_{2}}^{2}-i\|U x+i U y\|_{H_{2}}^{2}+i\|U x-i U y\|_{H_{2}}^{2}\right) \\
\frac{1}{4}\left(\|x+y\|_{H_{1}}^{2}-\|x-y\|_{H_{1}}^{2}-i\|x+i y\|_{H_{1}}^{2}+i\|x-i y\|_{H_{1}}^{2}\right)=\langle x, y\rangle_{H_{1}}
\end{array}
$$

