
Applied Analysis (APPM 5450): Midterm 1
11.35am – 12.50pm, Feb. 18, 2008. Closed books.

Problem 1: Let H be a Hilbert space with an ON-basis (ϕj)∞j=1, and let (xn)∞n=1, (yn)∞n=1, (zn)∞n=1,
(un)∞n=1, (vn)∞n=1, and (wn)∞n=1 be sequences in H for which you know the following:

〈xn, xm〉 = 0 if m 6= n and 〈xn, xn〉 = 1.

||yn|| = 1

lim sup
n→∞

||zn|| = ∞

||un|| = 1/n and lim
n→∞〈ϕj , un〉 = 0 for every j.

lim
n→∞〈ϕj , vn〉 = 0 for every j.

There exists a w ∈ H such that ||wn|| → ||w|| and lim
n→∞〈ϕj , wn〉 = 〈ϕj , w〉 for every j.

Solution:

xn yn zn un vn wn

(1) Necessarily converges strongly.
(2) Does not converge strongly. 2 3 2 1 3 1
(3) May or may not converge strongly.
(1) Necessarily has a strongly convergent subsequence.
(2) Does not have a strongly convergent subsequence. 2 3 3 1 3 1
(3) May or may not have a strongly convergent subsequence.
(1) Necessarily converges weakly.
(2) Does not converge weakly. 1 3 2 1 3 1
(3) May or may not converge weakly.
(1) Necessarily has a weakly convergent subsequence.
(2) Does not have a weakly convergent subsequence. 1 1 3 1 3 1
(3) May or may not have a weakly convergent subsequence.

Some (non-required!) comments:

(xn) is an ON-sequence. It converges weakly to zero but does not converge strongly.

(yn) necessarily has a weakly convergent subsequence since the unit ball in a Hilbert space is
weakly compact.

(zn) itself cannot converge either weakly or strongly since it has a subsequence (znj ) such that
limj→∞ ||znj || = ∞. However, it may have convergent sequences interlaced.

The condition ||un|| → 0 by itself implies that un → 0 strongly (and hence weakly as well).

You cannot say anything. Both the sequence vn = nϕn (which does not have any convergent
subsequences) and the sequence vn = 0 satisfy the given condition.

(wn) is weakly convergent since it is a bounded sequence that converges “componentwise”. More-
over, it must be that wn ⇀ w, and since in addition ||wn|| → ||w|| strong convergence follows.



Problem 2: Set I = [−π/2, π] and consider the Hilbert space H = L2(I).

(a) Set ϕn(x) = sin(nx) and prove that the set P = span(ϕn)∞n=1 is not dense in H. (3p)

(b) Set en(x) = ei n x/
√

2π and prove that the set (en)∞n=−∞ is linearly dependent in the sense that
there exists a sequence of complex numbers (αn)∞n=−∞ such that

0 <
∞∑

n=−∞
|αn|2 < ∞ and lim

N→∞
||

N∑

n=−N

αn en||L2(I) = 0.

(4p)

(c) Provide an ON-basis for H. (3p)

Solution:

(a) Set ψ = χ[−1/2,1/2]. Then 〈ϕn, ψ〉 =
∫ 1/2
−1/2 sin(nx) dx = 0 so ψ ∈ P⊥. Consequently, for any

ϕ ∈ P, we have ||ψ − ϕ|| =
√
||ψ||2 + ||ϕ||2 ≥ ||ψ|| = 1.

(b) Set ψ = χ[−π,−π/2], and set

αn = 〈en, ψ〉L2([−π,π]) =
1√
2π

∫ −π/2

−π
e−i n x dx.

Since (en) is an ON-basis for L2([−π, π]), we have
∑ |αn|2 = ||ψ||2L2([−π,π]) = π/2.

Next, set ψN =
∑N

n=−N αn en. Then

||
N∑

n=−N

αn en||2L2(I) =
∫ π

−π/2
|ψN (x)|2 dx =

∫ π

−π/2
|ψN (x)− ψ(x)|2 dx

≤
∫ π

−π
|ψN (x)− ψ(x)|2 dx = ||ψN − ψ||2L2([−π,π]) → 0.

(c) There are many choices. For instance:
{
An sin(n (2/3) (x + π/2))

}∞
n=1

, where An =
1

|| sin(n (2/3) (x + π/2))||L2(I)

{
Bn ei n (4/3) (x−π/4)

}∞
n=−∞, where Bn =

1
||ei n (4/3) (x−π/4)||L2(I)

=

√
2

3π

{
Cn ei n (4/3) x

}∞
n=−∞, where Cn =

1
||ei n (4/3) x||L2(I)

=

√
2

3 π



Problem 3: Let (λn)∞n=−∞ denote a bounded sequence of complex numbers and consider the map

(1) A : L2(T) → l2(Z) : u 7→ v = (. . . , v−1, v0, v1, . . . ) where vn = λn 〈en, u〉.
In (1), en denotes the Fourier basis for L2(T), en(x) = ei n x/

√
2π.

(a) Prove that ||A|| = supn |λn|. (4p)

(b) Let F : L2(T) → l2(Z) denote the Fourier transform. Complete the following sentences:
F−1A is self-adjoint if and only if every number λn satisfies . . .
F−1A is unitary if and only if every number λn satisfies . . .

Motivate briefly. (6p)

Solution:

(a) Set M = sup |λn|. Then

||Au||2 =
∑

n

|λn 〈en, u〉|2 ≤
∑

n

M2 | 〈en, u〉|2 = ||u||2,

so ||A|| ≤ M . Conversely,

||A|| = sup
||u||=1

||Au|| ≥ sup
n
||Aen|| = sup

n
|λn| = M.

(b) We have
[F−1 A]u =

∑
n

λn 〈u, en〉 en.

It is clear that
[(F−1 A)∗] u =

∑
n

λ̄n 〈u, en〉 en,

so F−1 A is self-adjoint iff λ̄n = λn (which is to say, iff λn is real for all n).

Similarly: F−1 A is unitary iff (F−1 A)∗ = (F−1 A)−1. It follows that

F−1 A is unitary ⇔ λ̄n = λ−1
n ∀n ⇔ |λn| = 1 ∀n.



Problem 4: Recall that for an n× n matrix A it is the case that

(2) ran(A) = ker(A∗)⊥.

Now consider the Hilbert space H = L2([−π, π]) and the operator

[Au](x) = x ei x u(x).

(a) Construct A∗ and prove that (2) does not hold for A. (6p)

(b) Determine ||A||. (4p)

Solution:

(a) First we note that

〈Au, v〉 =
∫

x ei x u(x) v(x) dx =
∫

u(x) (x e−i x v(x)) dx = 〈u, A∗ v〉,
with

[A∗v](x) = x e−i x v(x).
It is immediately clear that ker(A∗) = {0} so ker(A∗)⊥ = H.

However, A is not onto. To see this, note that the constant function 1 belongs to H, but the
equation Au = 1 does not have a solution in H. It follows that (2) does not hold.

(b) First we note that

||Au||2 =
∫
|x, ei x u(x)|2 dx ≤

∫
π2|u(x)|2 dx = π2||u||2.

It follows that ||A|| ≤ π. To prove the converse, consider the functions

un =
√

nχ[π−1/n, π].

We have ||un|| = 1 and so

||A||2 = sup
||u||=1

||Au||2 ≥ sup
n
||Aun||2 = sup

n

∫ π

π−1/n
|x ei x√n|2 dx

≥ sup
n

∫ π

π−1/n
(π − 1/n)2 n dx = sup

n
(π − 1/n)2 = π2.



Problem 5: Let H1 and H2 be Hilbert spaces.

(a) Define what it means for a map U ∈ B(H1, H2) to be unitary. (2p)

(b) Suppose that A ∈ B(H1, H2), that A is onto, and that ||A u|| = ||u|| for all u ∈ H1. Is A
necessarily unitary? Motivate briefly. (2p)

Solution:

(a) A map U ∈ B(H1,H2) is unitary if it is bijective and

〈U x, U y〉H2 = 〈x, y〉H1 ∀ x, y ∈ H1.

(b) Suppose that A is an isometry and is onto. Since A is an isometry, it follows that A is one-
to-one, and hence bijective. To see that A preserves the inner product, simply use a spectral
identity:

〈U x, U y〉H2 =
1
4
(||U x + U y||2H2

− ||U x− U y||2H2
− i ||U x + i U y||2H2

+ i ||U x− i U y||2H2

)

1
4
(||x + y||2H1

− ||x− y||2H1
− i ||x + i y||2H1

+ i ||x− i y||2H1

)
= 〈x, y〉H1


