Homework set 8 — APPM5450 Spring 2007 — Solutions/Hints
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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In bounding Sy we use that
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to obtain
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Problem 11.6: We find that
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Partial integrations yield
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Problem 11.7: First prove that x - §(x) = 0 and that = - PV(1/z) = 1
(using the regular rules for the product between a polynomial and a Schwartz
function). Suppose that - is distributive and can pair any two distributions.
Then on the one hand we would have
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But we would also have
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This is a contradiction.
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Obviously, ¢ € C*°, and
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Moreover, we find that if n > 1, then
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1 as

Then proceed as in the bound for z < 0.

Problem 1:

<Df;§0>:_<fﬂ0/>:_/

—0o0

0

(—z)¢'(x) do — /000 xy (z) dz

0 0
= (@)’ / (@) do — [zp(@)]F + / o(z) dz = (g, o),
T oo T o

where
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can
be assigned.) Furthermore,
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Problem 2: Assume that f satisfies the given assumptions. We will prove
that for any o and k, there exists a number C' and a finite integer N such

that
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Fix o and k. Then
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|07 f(z)| < Cy(1+ ‘$|2)N7/2

(Wf( ))(@70(2))l.

we obtain

al
f @llar < Sup(l + )2 Y ch(l + |22)M 20 ()]
Prom il

= > ﬁ, Cyllellg ks, -

Bty=a

Problem 3: Define for n =1,2,3, ..., the functions
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Now (2) clearly holds for any k. To prove (3) note that for any given k, we
have
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