Homework set 6 - APPM5450, Spring 2008

If you didn't complete all of the problems 9.1-9.11 last week, then continue working on that.
Problem 1: Let H_{1} and H_{2} be Hilbert spaces, let $U: H_{1} \rightarrow H_{2}$ be unitary, and let $A \in \mathcal{B}\left(H_{1}\right)$. Define $\tilde{A} \in \mathcal{B}\left(H_{2}\right)$ by $\tilde{A}=U A U^{-1}$. Prove that

- $\sigma_{\mathrm{p}}(A)=\sigma_{\mathrm{p}}(\tilde{A})$
- $\sigma_{\mathrm{c}}(A)=\sigma_{\mathrm{c}}(\tilde{A})$
- $\sigma_{\mathrm{r}}(A)=\sigma_{\mathrm{r}}(\tilde{A})$

Problem 2: Let A be a self-adjoint compact operator. For $\lambda \in \rho(A)$, set $R_{\lambda}=(A-\lambda I)^{-1}$ as usual. Construct the spectral decomposition of R_{λ}. Use it to prove that

$$
\left\|R_{\lambda}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(A))}=\frac{1}{\inf _{\mu \in \sigma(A)}|\lambda-\mu|}
$$

Problem 3: Consider the Hilbert space $H=L^{2}(I)$, where $I=[-\pi, \pi]$. Define

$$
\Omega_{t}=\{u \in H: u(x)=0 \forall x \geq t\} .
$$

Note that Ω_{t} is a closed linear subspace of H. Define $P(t)$ as the orthogonal projection onto Ω_{t}. Consider the self-adjoint operator $A \in \mathcal{B}(H)$ defined by

$$
[A u](x)=x u(x) .
$$

(a) Prove that Ω_{t} is an invariant subspace of A for every $t \in \mathbb{R}$.
(b) Prove that if $a<b \leq c<d$, then $\operatorname{ran}(P(b)-P(a)) \perp \operatorname{ran}(P(d)-P(c))$. Conclude that for any numbers $-\pi=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=\pi$, it is the case that

$$
H=\operatorname{ran}\left[P\left(t_{1}\right)-P\left(t_{0}\right)\right] \oplus \operatorname{ran}\left[P\left(t_{2}\right)-P\left(t_{1}\right)\right] \oplus \cdots \oplus \operatorname{ran}\left[P\left(t_{n}\right)-P\left(t_{n-1}\right)\right]
$$

where each term is an invariant subspace of A.
(c) For a positive integer n, set $h=2 \pi / n$, and $\lambda_{j}=-\pi+h j$. Define the operator

$$
\begin{equation*}
A_{n}=\sum_{j=1}^{n} \lambda_{j}\left(P\left(\lambda_{j}\right)-P\left(\lambda_{j-1}\right)\right) . \tag{1}
\end{equation*}
$$

Prove that $\left\|A-A_{n}\right\| \leq 2 \pi / n$. Conclude that $A_{n} \rightarrow A$ in norm.
Note: There is a spectral theorem for all self-adjoint operators on Hilbert spaces (all normal ones, even). For operators with continuum spectra such as A, the spectral decomposition of A involves so called "projection valued measures". The sum (1) is a Riemann-Riemann-Stieltjes sum of this integral

$$
A=\int_{-\pi}^{\pi} \lambda d P(\lambda)
$$

