Homework set 12 - APPM5450, Spring 2007 - Solutions

Problem 11.22: Set $T=\operatorname{sign}(t)$. We seek to prove that $\check{T}=\alpha \mathrm{PV}(1 / x)$ for some α.
For $N=1,2,3, \ldots$, set $T_{N}=\chi_{[-N, N]} T$. Then $T_{N} \rightarrow T$ in \mathcal{S}^{*} since for any $\varphi \in \mathcal{S}$, we have

$$
\left\langle T_{n}, \varphi\right\rangle=\int_{-N}^{N} \operatorname{sign}(x) \varphi(x) d x \rightarrow \int_{-\infty}^{\infty} \operatorname{sign}(x) \varphi(x) d x=\langle T, \varphi\rangle .
$$

Since the Fourier transform is a continuous operator on \mathcal{S}^{*}, we know that \check{T} is the limit of the sequence $\left(\check{T}_{N}\right)_{N=1}^{\infty}$.

Since $T_{N} \in L^{1}$, we can compute \check{T}_{N} by directly evaluating the integral. We find that

$$
\begin{equation*}
\check{T}_{N}(x)=\beta \frac{1-\cos (N x)}{x} \tag{1}
\end{equation*}
$$

for some constant β. If $\varphi \in \mathcal{S}$, then

$$
\begin{array}{r}
\left\langle\frac{1-\cos (N x)}{x}, \varphi\right\rangle=\int_{\mathbb{R}} \frac{1-\cos (N x)}{x} \varphi(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1-\cos (N x)}{x} \varphi(x) d x \\
=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x-\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \cos (N x) \frac{1}{x} \varphi(x) d x \\
=\langle\operatorname{PV}(1 / x), \varphi\rangle-\langle\cos (N x) \operatorname{PV}(1 / x), \varphi\rangle .
\end{array}
$$

It follows that formula (1) can be written $\check{T}_{N}(x)=\beta \mathrm{PV}(1 / x)-\beta \cos (N x) \mathrm{PV}(1 / x)$.
It remains to prove that $\cos (N x) \mathrm{PV}(1 / x) \rightarrow 0$ in \mathcal{S}^{\prime}. We find that

$$
\begin{aligned}
& \langle\cos (N x) \mathrm{PV}(1 / x), \varphi\rangle=\langle\mathrm{PV}(1 / x), \cos (N x) \varphi\rangle \\
& =\int_{0}^{\infty} \cos (N x) \frac{1}{x} \varphi(x) d x+\int_{-\infty}^{0} \cos (N x) \frac{1}{x} \varphi(x) d x \\
& \quad=\int_{0}^{\infty} \cos (N x) \frac{\varphi(x)-\varphi(-x)}{x} d x .
\end{aligned}
$$

Now set $\psi(x)=\frac{\varphi(x)-\varphi(-x)}{x}$. Then ψ is a continuously differentiable, quickly decaying function on $[0, \infty)$, so we can perform a partial integration to obtain

$$
\begin{aligned}
\left|\int_{0}^{\infty} \cos (N x) \frac{\varphi(x)-\varphi(-x)}{x} d x\right|=\left\lvert\,\left[\frac{\sin (N x)}{N} \psi(x)\right]_{0}^{\infty}\right. & \left.-\int_{0}^{\infty} \frac{\sin (N x)}{N} \psi^{\prime}(x) d x \right\rvert\, \\
& \leq \frac{1}{N} \int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x
\end{aligned}
$$

If we can prove that $\int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x<\infty$, we will be done. First note that for $x \in[0,1], \psi(x)=2 \varphi^{\prime}(0)+O\left(x^{2}\right)$, so for $x \in[0,1]$, we have $\left|\psi^{\prime}(x)\right| \leq C_{1}$ for some finite C_{1}. For $x \in[1, \infty)$, we have

$$
\left|\psi^{\prime}(x)\right|=\left|\frac{\varphi^{\prime}(x)+\varphi^{\prime}(-x)}{x}-\frac{\varphi(x)-\varphi(-x)}{x^{2}}\right| \leq 2 \frac{\|\varphi\|_{1,1}}{x^{2}}+2 \frac{\|\varphi\|_{0,0}}{x^{2}}=\frac{C_{2}}{x^{2}} .
$$

and so

$$
\int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x \leq \int_{0}^{1} C_{1} d x+\int_{1}^{\infty} \frac{C_{2}}{x^{2}} d x<\infty
$$

Problem 12.2: We use "ש" to denote disjoint unions.
(a) Suppose that $A, B \in \mathcal{A}$. Then note that $A \backslash B=A \cap B^{\mathrm{c}}=\left(A^{\mathrm{c}} \cup B\right)^{\mathrm{c}}$. It now follows directly from the axioms that $A \backslash B \in \mathcal{A}$.
(b) Set $C=B \backslash A$. Then $B=A \oplus C$, so

$$
\mu(B)=\mu(A ש C)=\mu(A)+\mu(C) \geq \mu(A) .
$$

(c) Set $C=A \cap B$. Then $A=(A \backslash B) \mathbb{ש} C$ and $B=(B \backslash A) ש C$ so

$$
\begin{aligned}
& \mu(A \cup B)=\mu((A \backslash B) \mathbb{\uplus} C \mathbb{\uplus}(B \backslash A))=\mu(A \backslash B)+\mu(C)+\mu(B \backslash A) \\
& \leq \mu(A \backslash B)+\mu(C)+\mu(C)+\mu(B \backslash A) \\
& \quad=\mu((A \backslash B) \mathbb{\uplus} C)+\mu(C \uplus(B \backslash A))=\mu(A)+\mu(B) .
\end{aligned}
$$

Problem 12.3: The trick is to write $\bigcup_{n=1}^{\infty} A_{n}$ as a disjoint union. For $n=1,2,3, \ldots$ set $B_{n}=A_{n+1} \backslash A_{n}$. Then

$$
\bigcup_{n=1}^{\infty} A_{n}=A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right),
$$

where there union on the right is a disjoint one. Now use additivity twice:

$$
\begin{aligned}
& \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu\left(A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)\right)=\mu\left(A_{1}\right)+\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \\
& \quad=\lim _{N \rightarrow \infty}\left(\mu\left(A_{1}\right)+\sum_{n=1}^{N} \mu\left(B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{1} \cup\left(\bigcup_{n=1}^{N} B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{N}\right) .
\end{aligned}
$$

For the second part, set $C=\cap_{n=1}^{\infty} A_{n}$ and $C_{n}=A_{n} \backslash A_{n+1}$. Then

$$
\mu\left(A_{N}\right)=\mu\left(C \cup\left(\bigcup_{n=N}^{\infty} C_{n}\right)\right)=\mu(C)+\sum_{n=N}^{\infty} \mu\left(C_{n}\right) .
$$

Since $\infty>\mu\left(A_{1}\right) \geq \sum_{n=1}^{\infty} \mu\left(C_{n}\right)$, we find that

$$
\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} \mu\left(C_{n}\right)=0
$$

which completes the proof. For the counterexample, consider $X=\mathbb{R}^{2}$, and $A_{n}=$ $\left\{x=\left(x_{1}, x_{2}\right):\left|x_{2}\right|<1 / n\right\}$. Then $\mu\left(A_{n}\right)=\infty$ for all n, but $\cap_{n=1}^{\infty} A_{n}$ is the x_{1}-axis, which has measure zero.

Problem 12.5: Straight-forward.

Problem 12.7:

Reflexivity: It is obvious that $f(x)=f(x)$ a.e.
Symmetry: If $f(x)=g(x)$ a.e., then obviously $g(x)=f(x)$ a.e.
Transitivity: Suppose that $f(x)=g(x)$ a.e. and that $g(x)=h(x)$ a.e. Set

$$
\begin{aligned}
A & =\{x: f(x) \neq g(x)\} \\
B & =\{x: g(x) \neq h(x)\} \\
C & =\{x: f(x) \neq h(x)\}
\end{aligned}
$$

We know that $\mu(A)=\mu(B)=0$, and we want to prove that $\mu(C)=0$. It is clearly the case that $C \subseteq A \cup B$, and then it follows directly that $\mu(C) \leq \mu(A)+\mu(B)=0$.

