Homework set 12 — APPM5450, Spring 2007 — Solutions

Problem 11.22: Set $T = \operatorname{sign}(t)$. We seek to prove that $\check{T} = \alpha PV(1/x)$ for some α .

For $N = 1, 2, 3, \ldots$, set $T_N = \chi_{[-N,N]} T$. Then $T_N \to T$ in \mathcal{S}^* since for any $\varphi \in \mathcal{S}$, we have

$$\langle T_n, \varphi \rangle = \int_{-N}^{N} \operatorname{sign}(x) \varphi(x) \, dx \to \int_{-\infty}^{\infty} \operatorname{sign}(x) \varphi(x) \, dx = \langle T, \varphi \rangle.$$

Since the Fourier transform is a continuous operator on \mathcal{S}^* , we know that \check{T} is the limit of the sequence $(\check{T}_N)_{N=1}^{\infty}$.

Since $T_N \in L^1$, we can compute \check{T}_N by directly evaluating the integral. We find that $\check{T}_N(x) = \beta \frac{1 - \cos(N x)}{x}$ (1)

$$\int \frac{1}{2\pi} \int \frac{1}{2\pi$$

for some constant β . If $\varphi \in \mathcal{S}$, then

$$\begin{split} \langle \frac{1 - \cos(Nx)}{x}, \, \varphi \rangle &= \int_{\mathbb{R}} \frac{1 - \cos(Nx)}{x} \, \varphi(x) \, dx = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1 - \cos(Nx)}{x} \, \varphi(x) \, dx \\ &= \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \varphi(x) \, dx - \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \cos(Nx) \frac{1}{x} \varphi(x) \, dx \\ &= \langle \mathrm{PV}(1/x), \, \varphi \rangle - \langle \cos(Nx) \, \mathrm{PV}(1/x), \, \varphi \rangle. \end{split}$$

It follows that formula (1) can be written $\check{T}_N(x) = \beta \operatorname{PV}(1/x) - \beta \cos(Nx) \operatorname{PV}(1/x)$. It remains to prove that $\cos(Nx) \operatorname{PV}(1/x) \to 0$ in \mathcal{S}' . We find that

$$\begin{aligned} \langle \cos(N\,x)\,\mathrm{PV}(1/x),\,\varphi\rangle &= \langle \mathrm{PV}(1/x),\,\cos(N\,x)\,\varphi\rangle \\ &= \int_0^\infty \cos(N\,x)\,\frac{1}{x}\,\varphi(x)\,dx + \int_{-\infty}^0\,\cos(N\,x)\,\frac{1}{x}\varphi(x)\,dx \\ &= \int_0^\infty \cos(N\,x)\,\frac{\varphi(x) - \varphi(-x)}{x}\,dx. \end{aligned}$$

Now set $\psi(x) = \frac{\varphi(x) - \varphi(-x)}{x}$. Then ψ is a continuously differentiable, quickly decaying function on $[0, \infty)$, so we can perform a partial integration to obtain

$$\left| \int_0^\infty \cos(Nx) \, \frac{\varphi(x) - \varphi(-x)}{x} \, dx \right| = \left| \left[\frac{\sin(Nx)}{N} \, \psi(x) \right]_0^\infty - \int_0^\infty \frac{\sin(Nx)}{N} \, \psi'(x) \, dx \right|$$
$$\leq \frac{1}{N} \int_0^\infty |\psi'(x)| \, dx.$$

If we can prove that $\int_0^\infty |\psi'(x)| dx < \infty$, we will be done. First note that for $x \in [0, 1], \psi(x) = 2\varphi'(0) + O(x^2)$, so for $x \in [0, 1]$, we have $|\psi'(x)| \leq C_1$ for some finite C_1 . For $x \in [1, \infty)$, we have

$$|\psi'(x)| = \left|\frac{\varphi'(x) + \varphi'(-x)}{x} - \frac{\varphi(x) - \varphi(-x)}{x^2}\right| \le 2\frac{||\varphi||_{1,1}}{x^2} + 2\frac{||\varphi||_{0,0}}{x^2} = \frac{C_2}{x^2}.$$

and so

$$\int_0^\infty |\psi'(x)| \, dx \le \int_0^1 C_1 \, dx + \int_1^\infty \frac{C_2}{x^2} \, dx < \infty.$$

Problem 12.2: We use "⊎" to denote disjoint unions.

(a) Suppose that $A, B \in \mathcal{A}$. Then note that $A \setminus B = A \cap B^c = (A^c \cup B)^c$. It now follows directly from the axioms that $A \setminus B \in \mathcal{A}$.

(b) Set
$$C = B \setminus A$$
. Then $B = A \sqcup C$, so
 $\mu(B) = \mu(A \sqcup C) = \mu(A) + \mu(C) \ge \mu(A)$.
(c) Set $C = A \cap B$. Then $A = (A \setminus B) \sqcup C$ and $B = (B \setminus A) \sqcup C$ so
 $\mu(A \sqcup B) = \mu((A \setminus B) \amalg C \amalg (B \setminus A)) = \mu(A \setminus B) + \mu(C) + \mu(B \setminus A)$

$$\mu(A \cup B) = \mu((A \setminus B) \oplus C \oplus (B \setminus A)) = \mu(A \setminus B) + \mu(C) + \mu(B \setminus A)$$
$$\leq \mu(A \setminus B) + \mu(C) + \mu(C) + \mu(B \setminus A)$$
$$= \mu((A \setminus B) \oplus C) + \mu(C \oplus (B \setminus A)) = \mu(A) + \mu(B).$$

Problem 12.3: The trick is to write $\bigcup_{n=1}^{\infty} A_n$ as a disjoint union. For n = 1, 2, 3, ... set $B_n = A_{n+1} \setminus A_n$. Then

$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup \left(\bigcup_{n=1}^{\infty} B_n\right),$$

where there union on the right is a disjoint one. Now use additivity twice:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(A_1 \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right) = \mu(A_1) + \sum_{n=1}^{\infty} \mu(B_n)$$
$$= \lim_{N \to \infty} \left(\mu(A_1) + \sum_{n=1}^{N} \mu(B_n)\right) = \lim_{N \to \infty} \mu\left(A_1 \cup \left(\bigcup_{n=1}^{N} B_n\right)\right) = \lim_{N \to \infty} \mu(A_N).$$

For the second part, set $C = \bigcap_{n=1}^{\infty} A_n$ and $C_n = A_n \setminus A_{n+1}$. Then

$$\mu(A_N) = \mu\left(C \cup \left(\bigcup_{n=N}^{\infty} C_n\right)\right) = \mu(C) + \sum_{n=N}^{\infty} \mu(C_n).$$

Since $\infty > \mu(A_1) \ge \sum_{n=1}^{\infty} \mu(C_n)$, we find that

$$\lim_{N \to \infty} \sum_{n=N}^{\infty} \mu(C_n) = 0,$$

which completes the proof. For the counterexample, consider $X = \mathbb{R}^2$, and $A_n = \{x = (x_1, x_2) : |x_2| < 1/n\}$. Then $\mu(A_n) = \infty$ for all n, but $\bigcap_{n=1}^{\infty} A_n$ is the x_1 -axis, which has measure zero.

Problem 12.5: Straight-forward.

Problem 12.7:

Reflexivity: It is obvious that f(x) = f(x) a.e.

Symmetry: If f(x) = g(x) a.e., then obviously g(x) = f(x) a.e.

Transitivity: Suppose that f(x) = g(x) a.e. and that g(x) = h(x) a.e. Set

$$A = \{x : f(x) \neq g(x)\}$$
$$B = \{x : g(x) \neq h(x)\}$$
$$C = \{x : f(x) \neq h(x)\}.$$

We know that $\mu(A) = \mu(B) = 0$, and we want to prove that $\mu(C) = 0$. It is clearly the case that $C \subseteq A \cup B$, and then it follows directly that $\mu(C) \leq \mu(A) + \mu(B) = 0$.