Applied Analysis (APPM 5450) - Midterm 3 - Solutions $5.00 \mathrm{pm}-6.25 \mathrm{pm}$, April 23, 2007. Closed books.

Problem 1: Pick out the true statements from the list below. One point each, no motivation required.
(a) If $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}, then $\hat{\varphi}_{n} \rightarrow \hat{\varphi}$ in \mathcal{S}.
(b) If $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}, then $\hat{\varphi}_{n} \rightarrow \hat{\varphi}$ in \mathcal{S}^{*}.
(c) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then $\hat{f} \in C_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$.
(d) If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ and $s>1 / 2$, then $f \in C_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$.
(e) If $f \in C_{0}\left(\mathbb{R}^{d}\right)$, then $\hat{f} \in L^{2}\left(\mathbb{R}^{d}\right)$.
(f) If $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$, then $\langle f, g\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}$.
(a) True. (Since \mathcal{F} is continuous on \mathcal{S}.)
(b) True. (Since \mathcal{F} is continuous on \mathcal{S}, we know that $\hat{\varphi}_{n} \rightarrow \hat{\varphi}$ in \mathcal{S}; and since convergence in \mathcal{S} implies convergence in \mathcal{S}^{*}, it follows that $\hat{\varphi}_{n} \rightarrow \hat{\varphi}$ in \mathcal{S}^{*} as well.)
(c) True. (The Riemann-Lebesgue lemma states that in fact $\hat{f} \in C_{0}\left(\mathbb{R}^{d}\right)$.)
(d) Not true unless $d=1$. (In the general case, $s>d / 2$ is required.)
(e) Not true. (If it were, then we'd have $f \in L^{2}$ since \mathcal{F}^{-1} is a unitary map on L^{2}. But not every function in C_{0} belongs to L^{2}.)
(f) True. $\left(\mathcal{F}\right.$ is a unitary map on $L^{2}\left(\mathbb{R}^{d}\right)$.)

Problem 2: Suppose that $\left(a_{n}\right)_{n=1}^{\infty}$ are real numbers such that $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$. Set $f(x)=\sum_{n=1}^{\infty} a_{n} e^{i n x}$. Is it necessarily the case that $\int_{-\pi}^{\pi} f(x) d x=0$? Motivate your answer. (4p)

Yes, $\int f=0$. To prove this, set $f_{N}(x)=\sum_{n=1}^{N} a_{n} e^{i n x}$. Then

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x) d x=\int_{-\pi}^{\pi}\left(\lim _{N \rightarrow \infty} f_{N}(x)\right) d x \tag{1}
\end{equation*}
$$

Now set

$$
g(x)=\sum_{n=1}^{\infty}\left|a_{n}\right| .
$$

Then $\left|f_{N}(x)\right| \leq g(x)$ for all x, and $\int_{-\pi}^{\pi} g(x) d x<\infty$. The Lebesgue dominated convergence theorem now allows us to swap the integral and the limit in (1), and so

$$
\int_{-\pi}^{\pi} f(x) d x=\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} f_{N}(x) d x
$$

Finally note that

$$
\int_{-\pi}^{\pi} f_{N}(x) d x=\int_{-\pi}^{\pi} \sum_{n=1}^{N} a_{n} e^{i n x} d x=\sum_{n=1}^{N} a_{n} \int_{-\pi}^{\pi} e^{i n x} d x=0
$$

since $\int_{-\pi}^{\pi} e^{i n x} d x=0$ for any positive integer n.

Problem 3: For $n=1,2,3, \ldots$, set $T_{n}(x)=\sin (n x) \chi_{[-n, n]}(x)$. Does the sequence $\left(T_{n}\right)_{n=1}^{\infty}$ converge in $\mathbb{S}^{*}(\mathbb{R})$? Motivate your answer. (4p)

Fix $\varphi \in \mathcal{S}$. Then

$$
\begin{aligned}
\left|\left\langle T_{n}, \varphi\right\rangle\right| & =\left|\int_{-n}^{n} \sin (n x) \varphi(x) d x\right| \\
& =\left|\left[-\frac{\cos (n x)}{n} \varphi(x)\right]_{-n}^{n}+\int_{-n}^{n} \frac{\cos (n x)}{n} \varphi^{\prime}(x) d x\right| \\
& =\left|-\frac{\cos \left(n^{2}\right)}{n} \varphi(n)+\frac{\cos \left(n^{2}\right)}{n} \varphi(-n)+\int_{-n}^{n} \frac{\cos (n x)}{n} \varphi^{\prime}(x) d x\right| \\
& \leq \frac{|\varphi(n)|}{n}+\frac{|\varphi(-n)|}{n}+\frac{1}{n} \int_{-\infty}^{\infty}\left|\varphi^{\prime}(x)\right| d x \\
& \leq \frac{2| | \varphi \|_{0,0}}{n}+\frac{1}{n} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}}\left(1+x^{2}\right)\left|\varphi^{\prime}(x)\right| d x \\
& \leq \frac{2\|\varphi\|_{0,0}}{n}+\frac{1}{n} \pi\|\varphi\|_{1,2} .
\end{aligned}
$$

Consequently, $\left\langle T_{n}, \varphi\right\rangle \rightarrow 0$ as $n \rightarrow \infty$, and so $T_{n} \rightarrow 0$ in \mathcal{S}^{*}.

Problem 4: Let f and h be functions in $L^{2}(\mathbb{R})$. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of functions in $L^{2}(\mathbb{R})$ that converges pointwise to f. Set

$$
\alpha_{n}=\int_{\mathbb{R}} f_{n}(x) h(x) d x, \quad \text { and } \quad \alpha=\int_{\mathbb{R}} f(x) h(x) d x
$$

(a) Give examples of functions f, h, and $\left(f_{n}\right)_{n=1}^{\infty}$ as described above such that the numbers α_{n} do not converge to α. (3p)
(b) Suppose that $\left|f_{n}(x)\right| \leq 1 /(1+|x|)$ for all x. Prove that then $\alpha_{n} \rightarrow \alpha$. (3p)
(a) One example is $h(x)=1 /(1+|x|)$ and $f_{n}(x)=n^{2} \chi_{[n, n+1]}(x)$. Then $f_{n} \rightarrow 0$ pointwise, so $\alpha=0$, but

$$
\alpha_{n}=\int_{n}^{n+1} n^{2} \frac{1}{1+x} d x \geq \frac{n^{2}}{n+1} \rightarrow \infty
$$

(b) Set $u_{n}(x)=f_{n}(x) h(x)$ and $u(x)=f(x) h(x)$. Then $u_{n} \rightarrow u$ pointwise. Setting $g(x)=(1 /(1+|x|))|h(x)|$, we have $\left|u_{n}(x)\right| \leq g(x)$ for all x. Moreover, a simple application of the Cauchy-Schwartz inequality yields

$$
\int_{\mathbb{R}} g(x) d x=\int_{\mathbb{R}} \frac{1}{1+|x|}|h(x)| d x \leq\left[\int_{\mathbb{R}} \frac{1}{(1+|x|)^{2}} d x \int_{\mathbb{R}}|h(x)|^{2} d x\right]^{1 / 2}
$$

which is finite since both h and $(1+|x|)^{-1}$ are members of $L^{2}(\mathbb{R}) .{ }^{1}$
Now according to the Lebesgue dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} u_{n}(x) d x=\int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} u_{n}(x)\right) d x \int_{\mathbb{R}} f(x) h(x) d x=\alpha
$$

[^0]This problem has been corrected: The norm that was originally in the problem has been substituted for a metric.

Problem 5: Let X be a set and let d be a metric on X. We define a collection \mathcal{S} of subsets of X by saying that $\Omega \in \mathcal{S}$ if and only if for every $x \in \Omega$ there exists an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq \Omega$, where $B_{\varepsilon}(x)=\{y \in X: d(x, y)<\varepsilon\}$.

The following questions are 1 p each. Motivate your answers to (b) and (c) briefly.
(a) State the axioms that a σ-algebra must satisfy.
(b) Give an example of an uncountable set X and a metric d such that \mathcal{S} is a σ-algebra.
(c) Give an example of an uncountable set X and a metric d such that \mathcal{S} is not a σ-algebra.
(a) See the textbook.
(b) Set $X=\mathbb{R}$ and

$$
d(x, y)= \begin{cases}1, & \text { when } x=y \\ 0, & \text { when } x \neq y\end{cases}
$$

Then \mathcal{S} is the power set (if Ω is an arbitrary subset, and $x \in \Omega$, then $B_{1 / 2}(x) \subseteq \Omega$), which trivially implies that it satisfies all the axioms of a σ-algebra.
(c) Set $X=\mathbb{R}$ and $d(x, y)=|x-y|$ (the standard metric on \mathbb{R}). Then \mathcal{S} is the standard topology on \mathbb{R}, which is not a σ-algebra. To see this, note for instance that $\Omega=(0, \infty) \in \mathcal{S}$, but $\Omega^{\mathrm{c}}=(-\infty, 0] \notin \mathcal{S}$.

[^0]: ${ }^{1}$ Cauchy-Schwartz is a little bit of overkill. The simple inequality $|a b| \leq \frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}$ suffices:

 $$
 \int_{\mathbb{R}} g(x) d x=\int_{\mathbb{R}} \frac{1}{1+|x|}|h(x)| d x \leq \frac{1}{2} \int_{\mathbb{R}}\left(\frac{1}{(1+|x|)^{2}}+|h(x)|^{2}\right) d x<\infty .
 $$

