Applied Analysis (APPM 5450): Midterm 3 5 00pm - 6 25pm April 23 2007 Closed books

5.00 pm - 6.25 pm, April 23, 2007. Closed books.

Problem 1: Pick out the true statements from the list below. One point each, no motivation required.

- (a) If $\varphi_n \to \varphi$ in \mathcal{S} , then $\hat{\varphi}_n \to \hat{\varphi}$ in \mathcal{S} .
- (b) If $\varphi_n \to \varphi$ in \mathcal{S} , then $\hat{\varphi}_n \to \hat{\varphi}$ in \mathcal{S}^* .
- (c) If $f \in L^1(\mathbb{R}^d)$, then $\hat{f} \in C_{\mathrm{b}}(\mathbb{R}^d)$.
- (d) If $f \in H^s(\mathbb{R}^d)$ and s > 1/2, then $f \in C_{\mathrm{b}}(\mathbb{R}^d)$.
- (e) If $f \in C_0(\mathbb{R}^d)$, then $\hat{f} \in L^2(\mathbb{R}^d)$.
- (f) If $f, g \in L^2(\mathbb{R}^d)$, then $\langle f, g \rangle_{L^2(\mathbb{R}^d)} = \langle \hat{f}, \hat{g} \rangle_{L^2(\mathbb{R}^d)}$.

Problem 2: Suppose that $(a_n)_{n=1}^{\infty}$ are real numbers such that $\sum_{n=1}^{\infty} |a_n| < \infty$. Set $f(x) = \sum_{n=1}^{\infty} a_n e^{i n x}$. Is it necessarily the case that $\int_{-\pi}^{\pi} f(x) dx = 0$? Motivate your answer. (4p)

Problem 3: For n = 1, 2, 3, ..., set $T_n(x) = \sin(n x) \chi_{[-n,n]}(x)$. Does the sequence $(T_n)_{n=1}^{\infty}$ converge in $\mathbb{S}^*(\mathbb{R})$? Motivate your answer. (4p)

Problem 4: Let f and h be functions in $L^2(\mathbb{R})$. Suppose that $(f_n)_{n=1}^{\infty}$ is a sequence of functions in $L^2(\mathbb{R})$ that converges *pointwise* to f. Set

$$\alpha_n = \int_{\mathbb{R}} f_n(x) h(x) dx$$
, and $\alpha = \int_{\mathbb{R}} f(x) h(x) dx$.

(a) Give examples of functions f, h, and $(f_n)_{n=1}^{\infty}$ as described above such that the numbers α_n **do not** converge to α . (3p)

(b) Suppose that $|f_n(x)| \leq 1/(1+|x|)$ for all x. Prove that then $\alpha_n \to \alpha$. (3p)

Problem 5 is deliberately given only a small number of points. It's probably only worth attempting if you have time to spare.

Problem 5: Let X be a set and let d be a metric on X. We define a collection S of subsets of X by saying that $\Omega \in S$ if and only if for every $x \in \Omega$ there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq \Omega$, where $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$.

The following questions are 1p each. Motivate your answers to (b) and (c) briefly.

(a) State the axioms that a σ -algebra must satisfy.

(b) Give an example of an uncountable set X and a metric d such that S is a σ -algebra.

(c) Give an example of an uncountable set X and a metric d such that S is not a σ -algebra.