Applied Analysis (APPM 5450): Midterm 2 – Solutions

Problem 1: Consider the function $f \in \mathcal{S}^*(\mathbb{R})$ defined by

$$f(x) = \begin{cases} -1 & \text{for } x \le 0, \\ 1 & \text{for } x > 0. \end{cases}$$

Compute the distributional derivative of f. (4p)

We find that

$$\langle f', \varphi \rangle = -\langle f, \varphi' \rangle = -\int_{-\infty}^{\infty} f(x) \varphi'(x) dx = \int_{-\infty}^{0} \varphi'(x) dx - \int_{0}^{\infty} \varphi'(x) dx = [\varphi(x)]_{-\infty}^{0} - [\varphi(x)]_{0}^{\infty} = (\varphi(0) - \lim_{R \to -\infty} \varphi(R)) - (\lim_{R \to \infty} \varphi(R) - \varphi(0)) = 2\varphi(0),$$

since $\varphi(x) \to 0$ as $|x| \to \infty$. It follows that $f' = 2\delta$ where δ is the Dirac delta function.

Problem 2: Consider the Hilbert space $H = l^2(\mathbb{N})$, and the operators $L, R \in \mathcal{B}(H)$ defined by

$$L(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots),$$

$$R(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots).$$

In the questions below, λ is a complex number,

- (a) Prove that if $|\lambda| < 1$, then $\lambda \in \sigma_p(L)$. (2p)
- (b) Prove that if $|\lambda| < 1$, then $\lambda \in \sigma_{\rm r}(R)$. (2p)
- (c) Prove that if $|\lambda| = 1$, then $\lambda \in \sigma(L)$. (2p)

(a) Set $u = (1, \lambda, \lambda^2, ...)$. Then $u \in H$, and $L u = (\lambda, \lambda^2, \lambda^3, ...) = \lambda u$,

and since $u \neq 0$, it follows that $\lambda \in \sigma_{p}(L)$.

(b) First we prove that $R - \lambda I$ is one-to-one. Suppose that $(R - \lambda I) u = 0$. Then

 $0 = \lambda u_1, \quad u_1 = \lambda u_2, \quad u_2 = \lambda u_3, \quad \text{etc.}$

If $\lambda = 0$, then u = 0. If $\lambda \neq 0$, then the first equation implies that $u_1 = 0$, the second that $u_2 = (1/\lambda)u_1 = 0$, and so on. In either case, u = 0, so $\lambda \notin \sigma_p(R)$.

Next note that the range of $R - \lambda I$ is not onto since¹

 $\operatorname{ran}(R - \lambda I)^{\perp} = \ker(R^* - \bar{\lambda}I) = \ker(L - \bar{\lambda}I) \neq \{0\}$

since $\overline{\lambda}$ is an eigenvalue of L. It follows that $\lambda \notin \rho(R)$. It also follows that the range of $R - \lambda I$ cannot be dense so $\lambda \notin \sigma_{\rm c}(R)$. We must then have $\lambda \in \sigma_{\rm r}(R)$.

(c) We proved in (a) that the open unit disc is contained in $\sigma(L)$. Since $\sigma(L)$ is closed, it follows that the closed unit disc must also be contained in $\sigma(L)$.

$$\langle R x, y \rangle = \sum_{n=2}^{\infty} \overline{x_{n-1}} y_n = \sum_{n=1}^{\infty} \overline{x_n} y_{n+1} = \langle x, L y \rangle.$$

¹In this calculation, we use that $R^* = L$. This is simple to prove:

Problem 3: Let H be a Hilbert space with an ON-basis $(\varphi_n)_{n=1}^{\infty}$. Let $(\lambda_n)_{n=1}^{\infty}$ be a sequence of complex numbers such that $|\lambda_n| < 1$ for every n, and let for $N = 1, 2, 3, \ldots$ the operator $A_N \in \mathcal{B}(H)$ defined by

$$A_N u = \sum_{n=1}^N \lambda_n \langle \varphi_n, u \rangle \varphi_n.$$

(a) Prove that there exists an operator $A \in \mathcal{B}(H)$ such that $A_N \to A$ strongly as $N \to \infty$. (2p)

(b) Prove that if some λ_n is not purely real, then A is not self-adjoint. (1p)

(c) Specify when, if ever, it is the case that A_N converges to A in norm. (1p)

(d) Suppose that the sequence $(\lambda_n)_{n=1}^{\infty}$ has the cluster point λ and that $\lambda \neq 0$. Prove that then A cannot be compact. (2p)

(a) We need to prove that for any fixed $u \in H$, the sequence the sequence $(A_N u)_{N=1}^{\infty}$ has a limit point (in the norm topology) in H. Since H is complete, it is sufficient to prove that $(A_N u)_{N=1}^{\infty}$ is Cauchy. Suppose that M and N are integers such that M < N. We get from Pythagoras that

$$||A_N u - A_M u||^2 = ||\sum_{n=M+1}^N \lambda_n \langle \varphi_n, u \rangle \varphi_n||^2 \le \sum_{n=M+1}^N |\lambda_n|^2 |\langle \varphi_n, u \rangle|^2.$$

Now use that $|\lambda_n| \leq 1$ for all n,

(1)
$$||A_N u - A_M u||^2 \le \sum_{n=M+1}^N |\langle \varphi_n, u \rangle|^2 \le \sum_{n=M+1}^\infty |\langle \varphi_n, u \rangle|^2$$

Since $\sum_{n=1}^{\infty} |\langle \varphi_n, u \rangle|^2 = ||u||^2 < \infty$, we find that the sum in (1) converges to zero as $M \to \infty$, so $(A_N u)$ is indeed Cauchy.

(b) Suppose that $\overline{\lambda_{n_0}} \neq \lambda_{n_0}$. Then

$$\langle A \varphi_{n_0}, \varphi_{n_0} \rangle = \langle \lambda_{n_0} \varphi_{n_0}, \varphi_{n_0} \rangle = \overline{\lambda_{n_0}} \langle \varphi_{n_0}, \varphi_{n_0} \rangle = \overline{\lambda_{n_0}}$$

but

$$\langle \varphi_{n_0}, A \varphi_{n_0} \rangle = \langle \varphi_{n_0}, \lambda_{n_0} \varphi_{n_0} \rangle = \lambda_{n_0} \langle \varphi_{n_0}, \varphi_{n_0} \rangle = \lambda_{n_0}.$$

(c) $||A_N - A|| \to 0$ if and only if $\lambda_n \to 0$ as $n \to \infty$.

(d) Pick λ_{n_j} such that $\lim_{j\to\infty} \lambda_{n_j} = \lambda \neq 0$, and $|\lambda_{n_j}| \ge |\lambda|/2$ for all j. Set

$$u_j = (1/\lambda_{n_j})\,\varphi_{n_j}.$$

Then $||u_j|| \leq 2/|\lambda|$, so (u_j) is a bounded sequence. However, $A u_j = \varphi_{n_j}$, so $(A u_j)$ is an ON-sequence. It follows that then A cannot be compact. (Recall that if A is compact, and (u_j) is a bounded sequence, then $(A u_j)$ must have a norm-convergent subsequence.)

Problem 4: Prove that the map $F: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R}): \varphi \mapsto \varphi^2$ is continuous. (4p)

Suppose that $\varphi_j \to \varphi$ in S. We need to prove that for each n, k, we have (2) $\lim_{j \to \infty} ||\varphi_j^2 - \varphi^2||_{n,k} = 0.$

For $m = 0, 1, 2, 3, \dots$ set

$$C_m = ||\varphi||_{m,0} + \sup_j ||\varphi_j||_{m,0}.$$

Since (φ_j) is Cauchy with respect to $|| \cdot ||_{m,0}$, each C_m is finite.

Now for a given pair n, k, we have

$$\begin{aligned} ||\varphi_{j}^{2} - \varphi^{2}||_{n,k} &= \sup_{x} \left| (1+x^{2})^{k/2} \partial^{n} (\varphi_{j}(x)^{2} - \varphi(x)^{2}) \right| \\ &= \sup_{x} \left| (1+x^{2})^{k/2} \partial^{n} \left((\varphi_{j}(x) - \varphi(x)) (\varphi_{j}(x) + \varphi(x)) \right) \right| \\ &= \sup_{x} \left| (1+x^{2})^{k/2} \sum_{m=0}^{n} \binom{n}{m} \partial^{n-m} (\varphi_{j}(x) - \varphi(x)) \partial^{m} (\varphi_{j}(x) + \varphi(x)) \right| \\ &\leq \sum_{m=0}^{n} \binom{n}{m} \sup_{x} \left[(1+x^{2})^{k/2} |\partial^{n-m} (\varphi_{j}(x) - \varphi(x))| \underbrace{|\varphi_{j}^{(m)}(x) + \varphi^{(m)}(x)|}_{\leq C_{m}} \right] \\ &\leq \sum_{m=0}^{n} C_{m} \binom{n}{m} ||\varphi_{j} - \varphi||_{n-m,k} \end{aligned}$$

Since the last line involves a finite number of terms, each of which converges to zero as $j \to \infty$, it follows that (2) holds.