Applied Analysis (APPM 5450): Midterm 2 - Solutions

Problem 1: Consider the function $f \in \mathcal{S}^{*}(\mathbb{R})$ defined by

$$
f(x)=\left\{\begin{aligned}
-1 & \text { for } x \leq 0 \\
1 & \text { for } x>0
\end{aligned}\right.
$$

Compute the distributional derivative of f. (4p)

We find that

$$
\begin{aligned}
& \left\langle f^{\prime}, \varphi\right\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=-\int_{-\infty}^{\infty} f(x) \varphi^{\prime}(x) d x=\int_{-\infty}^{0} \varphi^{\prime}(x) d x-\int_{0}^{\infty} \varphi^{\prime}(x) d x \\
& \quad=[\varphi(x)]_{-\infty}^{0}-[\varphi(x)]_{0}^{\infty}=\left(\varphi(0)-\lim _{R \rightarrow-\infty} \varphi(R)\right)-\left(\lim _{R \rightarrow \infty} \varphi(R)-\varphi(0)\right)=2 \varphi(0),
\end{aligned}
$$

since $\varphi(x) \rightarrow 0$ as $|x| \rightarrow \infty$. It follows that $f^{\prime}=2 \delta$ where δ is the Dirac delta function.

Problem 2: Consider the Hilbert space $H=l^{2}(\mathbb{N})$, and the operators $L, R \in \mathcal{B}(H)$ defined by

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) \\
& R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
\end{aligned}
$$

In the questions below, λ is a complex number,
(a) Prove that if $|\lambda|<1$, then $\lambda \in \sigma_{\mathrm{p}}(L)$. (2p)
(b) Prove that if $|\lambda|<1$, then $\lambda \in \sigma_{\mathrm{r}}(R)$. (2p)
(c) Prove that if $|\lambda|=1$, then $\lambda \in \sigma(L)$. (2p)
(a) Set $u=\left(1, \lambda, \lambda^{2}, \ldots\right)$. Then $u \in H$, and

$$
L u=\left(\lambda, \lambda^{2}, \lambda^{3}, \ldots\right)=\lambda u
$$

and since $u \neq 0$, it follows that $\lambda \in \sigma_{\mathrm{p}}(L)$.
(b) First we prove that $R-\lambda I$ is one-to-one. Suppose that $(R-\lambda I) u=0$. Then

$$
0=\lambda u_{1}, \quad u_{1}=\lambda u_{2}, \quad u_{2}=\lambda u_{3}, \quad \text { etc. }
$$

If $\lambda=0$, then $u=0$. If $\lambda \neq 0$, then the first equation implies that $u_{1}=0$, the second that $u_{2}=(1 / \lambda) u_{1}=0$, and so on. In either case, $u=0$, so $\lambda \notin \sigma_{\mathrm{p}}(R)$.

Next note that the range of $R-\lambda I$ is not onto since ${ }^{1}$

$$
\operatorname{ran}(R-\lambda I)^{\perp}=\operatorname{ker}\left(R^{*}-\bar{\lambda} I\right)=\operatorname{ker}(L-\bar{\lambda} I) \neq\{0\}
$$

since $\bar{\lambda}$ is an eigenvalue of L. It follows that $\lambda \notin \rho(R)$. It also follows that the range of $R-\lambda I$ cannot be dense so $\lambda \notin \sigma_{\mathrm{c}}(R)$. We must then have $\lambda \in \sigma_{\mathrm{r}}(R)$.
(c) We proved in (a) that the open unit disc is contained in $\sigma(L)$. Since $\sigma(L)$ is closed, it follows that the closed unit disc must also be contained in $\sigma(L)$.

[^0]Problem 3: Let H be a Hilbert space with an ON-basis $\left(\varphi_{n}\right)_{n=1}^{\infty}$. Let $\left(\lambda_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers such that $\left|\lambda_{n}\right|<1$ for every n, and let for $N=1,2,3, \ldots$ the operator $A_{N} \in \mathcal{B}(H)$ defined by

$$
A_{N} u=\sum_{n=1}^{N} \lambda_{n}\left\langle\varphi_{n}, u\right\rangle \varphi_{n} .
$$

(a) Prove that there exists an operator $A \in \mathcal{B}(H)$ such that $A_{N} \rightarrow A$ strongly as $N \rightarrow \infty$. (2p)
(b) Prove that if some λ_{n} is not purely real, then A is not self-adjoint. (1p)
(c) Specify when, if ever, it is the case that A_{N} converges to A in norm. (1p)
(d) Suppose that the sequence $\left(\lambda_{n}\right)_{n=1}^{\infty}$ has the cluster point λ and that $\lambda \neq 0$. Prove that then A cannot be compact. (2p)
(a) We need to prove that for any fixed $u \in H$, the sequence the sequence $\left(A_{N} u\right)_{N=1}^{\infty}$ has a limit point (in the norm topology) in H. Since H is complete, it is sufficient to prove that $\left(A_{N} u\right)_{N=1}^{\infty}$ is Cauchy. Suppose that M and N are integers such that $M<N$. We get from Pythagoras that

$$
\left\|A_{N} u-A_{M} u\right\|^{2}=\left\|\sum_{n=M+1}^{N} \lambda_{n}\left\langle\varphi_{n}, u\right\rangle \varphi_{n}\right\|^{2} \leq \sum_{n=M+1}^{N}\left|\lambda_{n}\right|^{2}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2} .
$$

Now use that $\left|\lambda_{n}\right| \leq 1$ for all n,

$$
\begin{equation*}
\left\|A_{N} u-A_{M} u\right\|^{2} \leq \sum_{n=M+1}^{N}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2} \leq \sum_{n=M+1}^{\infty}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2} . \tag{1}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}=\|u\|^{2}<\infty$, we find that the sum in (1) converges to zero as $M \rightarrow \infty$, so $\left(A_{N} u\right)$ is indeed Cauchy.
(b) Suppose that $\overline{\lambda_{n_{0}}} \neq \lambda_{n_{0}}$. Then

$$
\left\langle A \varphi_{n_{0}}, \varphi_{n_{0}}\right\rangle=\left\langle\lambda_{n_{0}} \varphi_{n_{0}}, \varphi_{n_{0}}\right\rangle=\overline{\lambda_{n_{0}}}\left\langle\varphi_{n_{0}}, \varphi_{n_{0}}\right\rangle=\overline{\lambda_{n_{0}}},
$$

but

$$
\left\langle\varphi_{n_{0}}, A \varphi_{n_{0}}\right\rangle=\left\langle\varphi_{n_{0}}, \lambda_{n_{0}} \varphi_{n_{0}}\right\rangle=\lambda_{n_{0}}\left\langle\varphi_{n_{0}}, \varphi_{n_{0}}\right\rangle=\lambda_{n_{0}} .
$$

(c) $\left\|A_{N}-A\right\| \rightarrow 0$ if and only if $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(d) Pick $\lambda_{n_{j}}$ such that $\lim _{j \rightarrow \infty} \lambda_{n_{j}}=\lambda \neq 0$, and $\left|\lambda_{n_{j}}\right| \geq|\lambda| / 2$ for all j. Set

$$
u_{j}=\left(1 / \lambda_{n_{j}}\right) \varphi_{n_{j}} .
$$

Then $\left\|u_{j}\right\| \leq 2 /|\lambda|$, so $\left(u_{j}\right)$ is a bounded sequence. However, $A u_{j}=\varphi_{n_{j}}$, so $\left(A u_{j}\right)$ is an ON-sequence. It follows that then A cannot be compact. (Recall that if A is compact, and $\left(u_{j}\right)$ is a bounded sequence, then $\left(A u_{j}\right)$ must have a norm-convergent subsequence.)

Problem 4: Prove that the map $F: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R}): \varphi \mapsto \varphi^{2}$ is continuous. (4p)

Suppose that $\varphi_{j} \rightarrow \varphi$ in \mathcal{S}. We need to prove that for each n, k, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|\varphi_{j}^{2}-\varphi^{2}\right\|_{n, k}=0 \tag{2}
\end{equation*}
$$

For $m=0,1,2,3, \ldots$ set

$$
C_{m}=\|\varphi\|_{m, 0}+\sup _{j}\left\|\varphi_{j}\right\|_{m, 0} .
$$

Since $\left(\varphi_{j}\right)$ is Cauchy with respect to $\|\cdot\|_{m, 0}$, each C_{m} is finite.
Now for a given pair n, k, we have

$$
\begin{aligned}
&\left\|\varphi_{j}^{2}-\varphi^{2}\right\|_{n, k}=\sup _{x}\left|\left(1+x^{2}\right)^{k / 2} \partial^{n}\left(\varphi_{j}(x)^{2}-\varphi(x)^{2}\right)\right| \\
&=\sup _{x}\left|\left(1+x^{2}\right)^{k / 2} \partial^{n}\left(\left(\varphi_{j}(x)-\varphi(x)\right)\left(\varphi_{j}(x)+\varphi(x)\right)\right)\right| \\
&=\sup _{x}\left|\left(1+x^{2}\right)^{k / 2} \sum_{m=0}^{n}\binom{n}{m} \partial^{n-m}\left(\varphi_{j}(x)-\varphi(x)\right) \partial^{m}\left(\varphi_{j}(x)+\varphi(x)\right)\right| \\
& \leq \sum_{m=0}^{n}\binom{n}{m} \sup _{x}[\left(1+x^{2}\right)^{k / 2}\left|\partial^{n-m}\left(\varphi_{j}(x)-\varphi(x)\right)\right| \underbrace{\left|\varphi_{j}^{(m)}(x)+\varphi^{(m)}(x)\right|}_{\leq C_{m}}] \\
& \leq \sum_{m=0}^{n} C_{m}\binom{n}{m}\left\|\varphi_{j}-\varphi\right\|_{n-m, k}
\end{aligned}
$$

Since the last line involves a finite number of terms, each of which converges to zero as $j \rightarrow \infty$, it follows that (2) holds.

[^0]: ${ }^{1}$ In this calculation, we use that $R^{*}=L$. This is simple to prove:

 $$
 \langle R x, y\rangle=\sum_{n=2}^{\infty} \overline{x_{n-1}} y_{n}=\sum_{n=1}^{\infty} \overline{x_{n}} y_{n+1}=\langle x, L y\rangle
 $$

