
Applied Analysis (APPM 5450): Midterm 1
5.00pm – 6.20pm, Feb. 19, 2007. Closed books.

Problem 1: Which of the following are true (no motivation required): (2p in total)
(a) In a Hilbert space, any bounded sequence has a weakly convergent subsequence.
(b) If f, g ∈ C(T), then ||f ∗ g||u ≤ ||f ||L2 ||g||L2 .
(c) The functions

(
sin(nx)

)∞
n=1

form an orthogonal basis for L2([0, π]).

(a) True - follows from the Banach-Alaoglu theorem.
(b) True - follows from Cauchy-Schwartz ([f ∗g](t) = 〈f, gt〉 where gt(x) = g(t−x)).
(c) True - see Exercise 7.3.

Problem 2: Let A be a self-adjoint operator on a Hilbert space H, and let λ be a
complex number. Prove that the adjoint of λA is λ̄ A. For which λ is λA necessarily
skew-adjoint? (2p)

For any x, y ∈ H, we find that

〈(λA) x, y〉 = λ̄〈Ax, y〉 = λ̄〈x, A∗ y〉 = 〈x, (λ̄A∗) y〉.
Consequently, (λA)∗ = −λA ⇔ λ̄ = −λ ⇔ Re(λ) = 0.

Problem 3: Let u be a function in L2(T) and set αn =
1√
2π

∫ π

−π
e−inx u(x) dx, for

n ∈ Z. Obviously, if only finitely many αn’s are non-zero, u will be continuous. Can
you give a more general condition involving only the sequence (αn)∞n=−∞? (2p)

The Sobolev embedding theorem says that u is continuous if
∞∑

n=−∞
|n|2k |αn|2 < ∞

for some k > 1/2.



Problem 4: Let H be a Hilbert space, and let (ϕn)∞n=1 be an orthonormal basis for
H. Consider for t ∈ R the operator A(t) ∈ B(H) defined by

A(t) u =
∞∑

n=1

(
1 + it

1− it

)n

〈ϕn, u〉ϕn.

(a) Prove that for any t ∈ R, the operator A(t) is unitary. (2p)

(b) Is it the case that A(t) is either self-adjoint of skew-adjoint for any t? (2p)

(c) For p ∈ N, set Ap = A(1/p). Does the sequence (Ap)∞p=1 converge in B(H)? If
so, specify in which sense, and what the limit is. Motivate your answer. (4p)

Set λn(t) =
(

1 + it

1− it

)n

.

It follows immediately from Parseval’s equality that

(1) A(t)∗ u =
∞∑

n=1

λn(t) 〈ϕn, u〉ϕn =
∞∑

n=1

λn(−t) 〈ϕn, u〉ϕn = A(−t)u.

(a) Since λn(t)−1 = λn(−t), it follows that A(t) is invertible and that A(t)−1 =
A(−t). That A(t) is unitary is now obvious since A(t)∗ = A(−t) = A(t)−1.

(b) We find that A(t) is self-adjoint iff every λn(t) is a real number. This happens
only for t = 0. Similarly, A(t) is skew-adjoin iff every λn(t) is a purely imaginary
number. That never happens.

(c) Ap converges strongly to the identity operator, but it does not converge in norm.

We first prove that Ap → I strongly. Fix u ∈ H. Fix ε > 0. Pick an N such that∑
n>N |〈ϕn, u〉|2 < ε. Then, using Parseval we find that

lim sup
p→∞

||A(1/p)u− u||2

= lim sup
p→∞




N∑

n=1

∣∣λn(1/p)− 1
∣∣2|〈ϕn, u〉|2 +

∞∑

n=N+1

∣∣λn(1/p)− 1
∣∣2

︸ ︷︷ ︸
≤2

|〈ϕn, u〉|2



≤
N∑

n=1

(
lim sup

p→∞

∣∣λn(1/p)− 1
∣∣2

)

︸ ︷︷ ︸
=0

|〈ϕn, u〉|2 + 2
∞∑

n=N+1

|〈ϕn, u〉|2

︸ ︷︷ ︸
<ε

< 2ε.

Since ε was arbitrary, it follows that limp→∞ ||Apu− u|| = 0.

To prove that Ap cannot converge in norm to I, simply pick for any p > 0, an n ∈ N
such that |λn(1/p)− 1| ≥ 1/2. Then

||Ap − I|| = sup
||u||=1

||Apu− u|| ≥ ||Apϕn − ϕn|| = ||(λn(1/p)− 1) ϕn|| ≥ 1/2.



Problem 5: Consider the Hilbert space H = L2(T), and the operator A ∈ B(H)
defined by [Au](x) = (1 + cosx)u(x). Prove that A is self-adjoint and positive, but
not coercive. (5p)

Set ϕ(x) = 1 + cos(x).

That A is self-adjoint follows immediately from the fact that 1 + cosx is real:

〈Au, v〉 =
∫ π

−π
(1 + cosx) u(x) v(x) dx =

∫ π

−π
u(x)

(
(1 + cosx) v(x)

)
dx = 〈u, A v〉.

That A is non-negative follows from the fact that 1 + cosx is non-negative:

(2) 〈Au, u〉 =
∫ π

−π
(1 + cosx)|u(x)|2 dx ≥ 0.

To further prove that A is positive, note that if we have equality in (2), then u(x)
must be zero everywhere except possibly on a set of measure zero, since 1 + cosx is
zero only for x = ±π.

Recall that A is coercive iff
inf
||u||=1

〈Au, u〉 > 0.

To prove that this is not true, define the functions un ∈ H by

un(x) =
{ √

n x ∈ [π − 1/n, π],
0 x ∈ (−π, π − 1/n).

Note that ||un|| = 1, so

inf
||u||=1

〈Au, u〉 ≤ inf
n∈N

〈Aun, un〉 = inf
n∈N

∫ π

π−1/n
(1 + cosx) |un(x)|2 dx

≤ inf
n∈N

∫ π

π−1/n

(
1 + cos(π − 1/n)

)
ndx = inf

n∈N
(
1 + cos(π − 1/n)

)
= 0.



Problem 6: Consider the Hilbert space H = L2(R). For this problem, we define
H as the closure of the set of all compactly supported smooth functions on R under
the norm

||u|| =
(∫ ∞

−∞
|u(x)|2 dx

)1/2
.

Which of the following sequences converge weakly in H? Motive your answers briefly.
(2p each)

(a) (un)∞n=1 where un(x) =
{ |x− n|, for x ∈ [n− 1, n + 1],

0, for x ∈ (−∞, n− 1) ∪ (n + 1,∞).

(b) (vn)∞n=1 where vn(x) = sin(nx) e−x2
.

(c) (wn)∞n=1 where wn(x) = e−x2/n.

Remark: Note that there exist functions f and fn in H such that

lim
n→∞

∫ ∞

−∞
f(x) fn(x) dx 6=

∫ ∞

−∞
f(x)

(
lim

n→∞ fn(x)
)
dx.

Keeping in mind the definition of H given above, you can solve the problem without
having to make such interchanges (not using any Lebesgue integrals at all).

Recall that if a sequence (ϕn)∞n=1 is bounded, and there exists a function ϕ ∈ H
such that 〈ϕn, ψ〉 → 〈ϕ,ψ〉 for all ψ in a dense subset P, then ϕn ⇀ ϕ. In (a) and
(b), we let P be the set of compactly supported smooth functions (this is dense by
definition).

(a) Since un(x) = u1(x−n+1), it follows that ||un|| = ||u1|| and so (un) is a bounded
sequence. Furthermore, if ψ ∈ P, then 〈un, ψ〉 → 0 since for large enough n, the
support of un will be outside the support of ψ. It follows that un ⇀ 0.

(b) ||vn||2 =
∫∞
−∞ | sin(nx)|2 e−2 x2

dx ≤ ∫∞
−∞ e−2 x2

dx so (vn) is bounded. Further-
more, if ψ ∈ P, then

|〈vn, ψ〉| =
∣∣∣∣
∫ ∞

−∞
sin(nx) e−x2

ψ(x) dx

∣∣∣∣ = {partial integration}

=
∣∣∣∣
∫ ∞

−∞

1
n

cos(nx)
d

dx

(
e−x2

ψ(x)
)

dx

∣∣∣∣ ≤
1
n

∫ ∞

−∞

∣∣∣∣
d

dx

(
e−x2

ψ(x)
)∣∣∣∣ dx → 0,

so vn ⇀ 0 (the boundary terms vanish since ψ has compact support).

(c) ||wn||2 =
∫∞
−∞ e−2 x2/n dx = {x =

√
n y} =

√
n

∫∞
−∞ e−2 x2

dx =
√

n||w1||2 → ∞
so (wn) cannot converge weakly.


