# Applied Analysis (APPM 5450): Midterm 1 

$5.00 \mathrm{pm}-6.20$ pm, Feb. 19, 2007. Closed books.
Problem 1: Which of the following are true (no motivation required): ( 2 p in total)
(a) In a Hilbert space, any bounded sequence has a weakly convergent subsequence.
(b) If $f, g \in C(\mathbb{T})$, then $\|f * g\|_{\mathrm{u}} \leq\|f\|_{L^{2}}\|g\|_{L^{2}}$.
(c) The functions $(\sin (n x))_{n=1}^{\infty}$ form an orthogonal basis for $L^{2}([0, \pi])$.
(a) True - follows from the Banach-Alaoglu theorem.
(b) True - follows from Cauchy-Schwartz $\left([f * g](t)=\left\langle f, g_{t}\right\rangle\right.$ where $\left.g_{t}(x)=g(t-x)\right)$.
(c) True - see Exercise 7.3.

Problem 2: Let $A$ be a self-adjoint operator on a Hilbert space $H$, and let $\lambda$ be a complex number. Prove that the adjoint of $\lambda A$ is $\bar{\lambda} A$. For which $\lambda$ is $\lambda A$ necessarily skew-adjoint? (2p)

For any $x, y \in H$, we find that

$$
\langle(\lambda A) x, y\rangle=\bar{\lambda}\langle A x, y\rangle=\bar{\lambda}\left\langle x, A^{*} y\right\rangle=\left\langle x,\left(\bar{\lambda} A^{*}\right) y\right\rangle .
$$

Consequently, $(\lambda A)^{*}=-\lambda A \quad \Leftrightarrow \quad \bar{\lambda}=-\lambda \quad \Leftrightarrow \quad \operatorname{Re}(\lambda)=0$.

Problem 3: Let $u$ be a function in $L^{2}(\mathbb{T})$ and set $\alpha_{n}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} e^{-i n x} u(x) d x$, for $n \in \mathbb{Z}$. Obviously, if only finitely many $\alpha_{n}$ 's are non-zero, $u$ will be continuous. Can you give a more general condition involving only the sequence $\left(\alpha_{n}\right)_{n=-\infty}^{\infty}$ ? (2p)

The Sobolev embedding theorem says that $u$ is continuous if

$$
\sum_{n=-\infty}^{\infty}|n|^{2 k}\left|\alpha_{n}\right|^{2}<\infty
$$

for some $k>1 / 2$.

Problem 4: Let $H$ be a Hilbert space, and let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be an orthonormal basis for $H$. Consider for $t \in \mathbb{R}$ the operator $A(t) \in \mathcal{B}(H)$ defined by

$$
A(t) u=\sum_{n=1}^{\infty}\left(\frac{1+i t}{1-i t}\right)^{n}\left\langle\varphi_{n}, u\right\rangle \varphi_{n} .
$$

(a) Prove that for any $t \in \mathbb{R}$, the operator $A(t)$ is unitary. (2p)
(b) Is it the case that $A(t)$ is either self-adjoint of skew-adjoint for any $t$ ? (2p)
(c) For $p \in \mathbb{N}$, set $A_{p}=A(1 / p)$. Does the sequence $\left(A_{p}\right)_{p=1}^{\infty}$ converge in $\mathcal{B}(H)$ ? If so, specify in which sense, and what the limit is. Motivate your answer. (4p)

Set $\lambda_{n}(t)=\left(\frac{1+i t}{1-i t}\right)^{n}$.
It follows immediately from Parseval's equality that

$$
\begin{equation*}
A(t)^{*} u=\sum_{n=1}^{\infty} \overline{\lambda_{n}(t)}\left\langle\varphi_{n}, u\right\rangle \varphi_{n}=\sum_{n=1}^{\infty} \lambda_{n}(-t)\left\langle\varphi_{n}, u\right\rangle \varphi_{n}=A(-t) u . \tag{1}
\end{equation*}
$$

(a) Since $\lambda_{n}(t)^{-1}=\lambda_{n}(-t)$, it follows that $A(t)$ is invertible and that $A(t)^{-1}=$ $A(-t)$. That $A(t)$ is unitary is now obvious since $A(t)^{*}=A(-t)=A(t)^{-1}$.
(b) We find that $A(t)$ is self-adjoint iff every $\lambda_{n}(t)$ is a real number. This happens only for $t=0$. Similarly, $A(t)$ is skew-adjoin iff every $\lambda_{n}(t)$ is a purely imaginary number. That never happens.
(c) $A_{p}$ converges strongly to the identity operator, but it does not converge in norm.

We first prove that $A_{p} \rightarrow I$ strongly. Fix $u \in H$. Fix $\varepsilon>0$. Pick an $N$ such that $\sum_{n>N}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}<\varepsilon$. Then, using Parseval we find that

$$
\begin{aligned}
& \limsup _{p \rightarrow \infty}\|A(1 / p) u-u\|^{2} \\
& =\limsup _{p \rightarrow \infty}(\sum_{n=1}^{N}\left|\lambda_{n}(1 / p)-1\right|^{2}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}+\sum_{n=N+1}^{\infty} \underbrace{\left|\lambda_{n}(1 / p)-1\right|^{2}}_{\leq 2}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}) \\
& \quad \leq \sum_{n=1}^{N} \underbrace{\left(\limsup _{p \rightarrow \infty}\left|\lambda_{n}(1 / p)-1\right|^{2}\right)}_{=0}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}+2 \underbrace{\sum_{n=N+1}^{\infty}\left|\left\langle\varphi_{n}, u\right\rangle\right|^{2}}_{<\varepsilon}<2 \varepsilon .
\end{aligned}
$$

Since $\varepsilon$ was arbitrary, it follows that $\lim _{p \rightarrow \infty}\left\|A_{p} u-u\right\|=0$.
To prove that $A_{p}$ cannot converge in norm to $I$, simply pick for any $p>0$, an $n \in \mathbb{N}$ such that $\left|\lambda_{n}(1 / p)-1\right| \geq 1 / 2$. Then

$$
\left\|A_{p}-I\right\|=\sup _{\|u\|=1}\left\|A_{p} u-u\right\| \geq\left\|A_{p} \varphi_{n}-\varphi_{n}\right\|=\left\|\left(\lambda_{n}(1 / p)-1\right) \varphi_{n}\right\| \geq 1 / 2
$$

Problem 5: Consider the Hilbert space $H=L^{2}(\mathbb{T})$, and the operator $A \in \mathcal{B}(H)$ defined by $[A u](x)=(1+\cos x) u(x)$. Prove that $A$ is self-adjoint and positive, but not coercive. (5p)

Set $\varphi(x)=1+\cos (x)$.
That $A$ is self-adjoint follows immediately from the fact that $1+\cos x$ is real:

$$
\langle A u, v\rangle=\int_{-\pi}^{\pi} \overline{(1+\cos x) u(x)} v(x) d x=\int_{-\pi}^{\pi} \overline{u(x)}((1+\cos x) v(x)) d x=\langle u, A v\rangle .
$$

That $A$ is non-negative follows from the fact that $1+\cos x$ is non-negative:

$$
\begin{equation*}
\langle A u, u\rangle=\int_{-\pi}^{\pi}(1+\cos x)|u(x)|^{2} d x \geq 0 . \tag{2}
\end{equation*}
$$

To further prove that $A$ is positive, note that if we have equality in (2), then $u(x)$ must be zero everywhere except possibly on a set of measure zero, since $1+\cos x$ is zero only for $x= \pm \pi$.

Recall that $A$ is coercive iff

$$
\inf _{\|u\|=1}\langle A u, u\rangle>0 .
$$

To prove that this is not true, define the functions $u_{n} \in H$ by

$$
u_{n}(x)= \begin{cases}\sqrt{n} & x \in[\pi-1 / n, \pi] \\ 0 & x \in(-\pi, \pi-1 / n)\end{cases}
$$

Note that $\left\|u_{n}\right\|=1$, so

$$
\begin{aligned}
\inf _{\|u\|=1}\langle A u, u\rangle & \leq \inf _{n \in \mathbb{N}}\left\langle A u_{n}, u_{n}\right\rangle=\inf _{n \in \mathbb{N}} \int_{\pi-1 / n}^{\pi}(1+\cos x)\left|u_{n}(x)\right|^{2} d x \\
& \leq \inf _{n \in \mathbb{N}} \int_{\pi-1 / n}^{\pi}(1+\cos (\pi-1 / n)) n d x=\inf _{n \in \mathbb{N}}(1+\cos (\pi-1 / n))=0 .
\end{aligned}
$$

Problem 6: Consider the Hilbert space $H=L^{2}(\mathbb{R})$. For this problem, we define $H$ as the closure of the set of all compactly supported smooth functions on $\mathbb{R}$ under the norm

$$
\|u\|=\left(\int_{-\infty}^{\infty}|u(x)|^{2} d x\right)^{1 / 2}
$$

Which of the following sequences converge weakly in $H$ ? Motive your answers briefly. (2p each)
(a) $\left(u_{n}\right)_{n=1}^{\infty}$ where $u_{n}(x)= \begin{cases}|x-n|, & \text { for } x \in[n-1, n+1], \\ 0, & \text { for } x \in(-\infty, n-1) \cup(n+1, \infty) .\end{cases}$
(b) $\left(v_{n}\right)_{n=1}^{\infty}$ where $v_{n}(x)=\sin (n x) e^{-x^{2}}$.
(c) $\left(w_{n}\right)_{n=1}^{\infty}$ where $w_{n}(x)=e^{-x^{2} / n}$.

Remark: Note that there exist functions $f$ and $f_{n}$ in $H$ such that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) f_{n}(x) d x \neq \int_{-\infty}^{\infty} f(x)\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

Keeping in mind the definition of $H$ given above, you can solve the problem without having to make such interchanges (not using any Lebesgue integrals at all).

Recall that if a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is bounded, and there exists a function $\varphi \in H$ such that $\left\langle\varphi_{n}, \psi\right\rangle \rightarrow\langle\varphi, \psi\rangle$ for all $\psi$ in a dense subset $\mathcal{P}$, then $\varphi_{n} \rightharpoonup \varphi$. In (a) and (b), we let $\mathcal{P}$ be the set of compactly supported smooth functions (this is dense by definition).
(a) Since $u_{n}(x)=u_{1}(x-n+1)$, it follows that $\left\|u_{n}\right\|=\left\|u_{1}\right\|$ and so $\left(u_{n}\right)$ is a bounded sequence. Furthermore, if $\psi \in \mathcal{P}$, then $\left\langle u_{n}, \psi\right\rangle \rightarrow 0$ since for large enough $n$, the support of $u_{n}$ will be outside the support of $\psi$. It follows that $u_{n} \rightharpoonup 0$.
(b) $\left\|v_{n}\right\|^{2}=\int_{-\infty}^{\infty}|\sin (n x)|^{2} e^{-2 x^{2}} d x \leq \int_{-\infty}^{\infty} e^{-2 x^{2}} d x$ so $\left(v_{n}\right)$ is bounded. Furthermore, if $\psi \in \mathcal{P}$, then

$$
\begin{aligned}
& \left|\left\langle v_{n}, \psi\right\rangle\right|=\left|\int_{-\infty}^{\infty} \sin (n x) e^{-x^{2}} \psi(x) d x\right|=\{\text { partial integration }\} \\
& \quad=\left|\int_{-\infty}^{\infty} \frac{1}{n} \cos (n x) \frac{d}{d x}\left(e^{-x^{2}} \psi(x)\right) d x\right| \leq \frac{1}{n} \int_{-\infty}^{\infty}\left|\frac{d}{d x}\left(e^{-x^{2}} \psi(x)\right)\right| d x \rightarrow 0
\end{aligned}
$$

so $v_{n} \rightharpoonup 0$ (the boundary terms vanish since $\psi$ has compact support).
(c) $\left\|w_{n}\right\|^{2}=\int_{-\infty}^{\infty} e^{-2 x^{2} / n} d x=\{x=\sqrt{n} y\}=\sqrt{n} \int_{-\infty}^{\infty} e^{-2 x^{2}} d x=\sqrt{n}\left\|w_{1}\right\|^{2} \rightarrow \infty$ so $\left(w_{n}\right)$ cannot converge weakly.

