Applied Analysis (APPM 5450): Midterm 1

$5.00 \mathrm{pm}-6.20 \mathrm{pm}$, Feb. 19, 2007. Closed books.
Problem 1: Which of the following are true (no motivation required): (2 p in total)
(a) In a Hilbert space, any bounded sequence has a weakly convergent subsequence.
(b) If $f, g \in C(\mathbb{T})$, then $\|f * g\|_{\mathrm{u}} \leq\|f\|_{L^{2}}\|g\|_{L^{2}}$.
(c) The functions $(\sin (n x))_{n=1}^{\infty}$ form an orthogonal basis for $L^{2}([0, \pi])$.

Problem 2: Let A be a self-adjoint operator on a Hilbert space H, and let λ be a complex number. Prove that the adjoint of λA is $\bar{\lambda} A$. For which λ is λA necessarily skew-adjoint? (2p)
Problem 3: Let u be a function in $L^{2}(\mathbb{T})$ and set $\alpha_{n}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} e^{-i n x} u(x) d x$, for $n \in \mathbb{Z}$. Obviously, if only finitely many α_{n} 's are non-zero, u will be continuous. Can you give a more general condition involving only the sequence $\left(\alpha_{n}\right)_{n=-\infty}^{\infty}$? (2p)
Problem 4: Let H be a Hilbert space, and let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be an orthonormal basis for H. Consider for $t \in \mathbb{R}$ the operator $A(t) \in \mathcal{B}(H)$ defined by

$$
A(t) u=\sum_{n=1}^{\infty}\left(\frac{1+i t}{1-i t}\right)^{n}\left\langle\varphi_{n}, u\right\rangle \varphi_{n} .
$$

(a) Prove that for any $t \in \mathbb{R}$, the operator $A(t)$ is unitary. (2p)
(b) Is it the case that $A(t)$ is either self-adjoint of skew-adjoint for any t ? (2p)
(c) For $p \in \mathbb{N}$, set $A_{p}=A(1 / p)$. Does the sequence $\left(A_{p}\right)_{p=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, specify in which sense, and what the limit is. Motivate your answer. (4p)

Problem 5: Consider the Hilbert space $H=L^{2}(\mathbb{T})$, and the operator $A \in \mathcal{B}(H)$ defined by $[A u](x)=(1+\cos x) u(x)$. Prove that A is self-adjoint and positive, but not coercive. (5p)

Problem 6: Consider the Hilbert space $H=L^{2}(\mathbb{R})$. For this problem, we define H as the closure of the set of all compactly supported smooth functions on \mathbb{R} under the norm

$$
\|u\|=\left(\int_{-\infty}^{\infty}|u(x)|^{2} d x\right)^{1 / 2}
$$

Which of the following sequences converge weakly in H ? Motive your answers briefly. (2p each)
(a) $\left(u_{n}\right)_{n=1}^{\infty}$ where $u_{n}(x)= \begin{cases}|x-n|, & \text { for } x \in[n-1, n+1], \\ 0, & \text { for } x \in(-\infty, n-1) \cup(n+1, \infty) .\end{cases}$
(b) $\left(v_{n}\right)_{n=1}^{\infty}$ where $v_{n}(x)=\sin (n x) e^{-x^{2}}$.
(c) $\left(w_{n}\right)_{n=1}^{\infty}$ where $w_{n}(x)=e^{-x^{2} / n}$.

Remark: Note that there exist functions f and f_{n} in H such that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) f_{n}(x) d x \neq \int_{-\infty}^{\infty} f(x)\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

Keeping in mind the definition of H given above, you can solve the problem without having to make such interchanges (not using any Lebesgue integrals at all).

