9.10 (slightly reworded): Consider the Hilbert space $H = l^2(\mathbb{N})$ and the operators L and R defined by

$$R(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots),$$

 $L(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots).$

Determine and classify the spectra of L and R.

Solution: First we determine the eigenvalues. Let λ be a complex number and consider the equation $Rx = \lambda x$. It is easily seen that the only solution is x = 0 (ones needs to distinguish between the cases $\lambda = 0$ and $\lambda \neq 0$), and so $\sigma_{\rm p}(R) = \emptyset$. Next consider the equation $Lx = \lambda x$. The only solution is $x = x_1 (1, \lambda, \lambda^2, \ldots)$, so we can construct eigenvectors in H if and only if $|\lambda| < 1$. Thus $\sigma_{\rm p}(L) = \{\lambda : |\lambda| < 1\}$.

Consider λ such that $|\lambda| > 1$: Since ||L|| = ||R|| = 1, we immediately find that $\lambda \notin \sigma(L)$ and $\lambda \notin \sigma(R)$.

Consider λ such that $|\lambda| < 1$: We already determined that $\lambda \in \sigma_p(L)$. Since $R = L^*$, this fact gives us information about the spectrum of R as well since

$$\overline{\operatorname{ran}(R - \lambda I)} = \left(\ker(R^* - \bar{\lambda}I)\right)^{\perp} = \left(\ker(L - \bar{\lambda}I)\right)^{\perp} \neq \{0\}.$$

It follows that $\lambda \in \sigma(R)$, but that $\lambda \notin \sigma_{\rm c}(R)$. Moreover, we determined previously that $\sigma_{\rm p}(R) = \emptyset$, so we must have that $\lambda \in \sigma_{\rm r}(R)$.

Consider λ such that $|\lambda| = 1$: First note that since the spectrum of any operator is closed, and the open unit disc belongs to the spectra of both L and R, we know that λ belongs to both $\sigma(L)$ and $\sigma(R)$. We also know that λ is not an eigenvalue of either L or R. Suppose that λ is in the residual spectrum of L. It would then follow that $\bar{\lambda} \in \sigma_p(L^*) = \sigma_p(R)$, but we know that this is not the case. Thus $\lambda \in \sigma_c(L)$. The proof that $\lambda \in \sigma_c(R)$ is analogous.