Homework set 5 - APPM5450, Spring 2007

The problems in the text-book are excellent. Do as many of the problems $9.1-9.11$ as you have time for. If you don't have time to look at all, then I would recommend that you do these first: $9.1,9.5,9.7,9.8$, and 9.10 .

Some comments on the problems:
9.1: Easy.
9.2: Requires a little more work than one might think. Compare Prop 9.12.
9.3: We did this in class.
9.4: . . .
9.5: Note that any "non-negative" operator is implicitly assumed to be self-adjoint.
9.6: ...
9.7: For (c), use formula (9.5). By partial integration, you can show that $\left\|A^{n}\right\| \rightarrow 0$. For (d), show that 0 cannot be an eigenvalue by rewriting the integral equation as an ODE. (Similar problems have occured on the analysis prelims.)
9.8: This problem is very easily solved by working in the Fourier domain.
9.9: Again, work in the Fourier domain.
9.10: A good example of an operator with a residual spectrum (note that it is not a normal operator).
9.11: From the statement proved here, a very important fact follows: If $\lambda \in$ $\sigma_{\mathrm{c}}(A)$, then there exists a sequence of vectors $\left(x_{n}\right)_{n=1}^{\infty}$ such that $\left\|x_{n}\right\|=1$ and $\left\|(A-\lambda I) x_{n}\right\| \rightarrow 0$.

