Homework set 13 - APPM5450, Spring 2007

From the textbook: 12.4. Problems 1 and 2 below are important, problem 3 less so.
Problem 1: Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on \mathbb{R} such that $\lim _{n \rightarrow \infty} f_{n}(x)=x$ for all $x \in \mathbb{R}$. Specify which of the following limits necessarily exist, and give a formula for the limit in the cases where this is possible:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{1}^{2} \frac{f_{n}(x)}{1+f_{n}(x)^{2}} d x \tag{1}\\
& \lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x \tag{2}\\
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(f_{n}(x)\right)}{f_{n}(x)} d x \tag{3}\\
& \lim _{N \rightarrow \infty} \int_{0}^{1} \sum_{n=1}^{N} \frac{\left|f_{n}(x)\right|}{n^{2}\left(1+\left|f_{n}(x)\right|\right)} d x \tag{4}\\
& \lim _{N \rightarrow \infty} \int_{0}^{\infty} \sum_{n=1}^{N} \frac{1}{n^{2}\left(1+\left|f_{n}(x)\right|^{2}\right)} d x . \tag{5}
\end{align*}
$$

Problem 2: Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real-valued measurable functions on \mathbb{R} such that $\left|f_{n}(x)\right| \leq 1$ and $\lim _{n \rightarrow \infty} f_{n}(x)=1$ for all x. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(\cos x) e^{-\frac{1}{2}(x-2 \pi n)^{2}} d x
$$

Make sure to justify your calculation.
Problem 3: Let (X, μ) be a measure space and consider the space $L^{\infty}(X, \mu)$ consisting of all measurable functions from X to \mathbb{R} such that

$$
\|f\|_{\infty}=\underset{x \in X}{\operatorname{ess} \sup }|f(x)|<\infty .
$$

Prove that $L^{\infty}(X, \mu)$ is closed under the norm $\|\cdot\|_{\infty}$.
Hint: You may want to start as follows:
(1) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(X, \mu)$.
(2) For each positive integer k, there exists and N_{k} such that for $m, n \geq N_{k}$, $\left\|f_{n}-f_{m}\right\|_{\infty}<1 / k$.
(3) For each k, and for each $m, n \geq N_{k}$, let $\Omega_{m n}^{k}$ denote the set of all $x \in X$ such that $\left|f_{m}(x)-f_{n}(x)\right|<1 / k$. What can you tell about $\Omega_{m n}^{k}$ in light of (2)?
(4) Form $\Omega^{k}=\cap_{m, n=N_{k}}^{\infty} \Omega_{m n}^{k}$. What do you know about Ω^{k} in view of your conclusion from (3)?
(5) Form $\Omega=\cap_{k=1}^{\infty} \Omega^{k}$. What do you know about Ω in view of your conclusion from (4)?
(6) What can you tell about $\left(f_{n}(x)\right)_{n=1}^{\infty}$ for $x \in \Omega$?

