Homework set 12 - APPM5450, Spring 2007 - Hints

Problem 11.22: Set $T=\operatorname{sign}(t)$. We seek to prove that $\check{T}=\alpha \mathrm{PV}(1 / x)$ for some constant α.

For $N=1,2,3, \ldots$, set $T_{N}=\chi_{[-N, N]} T$. Then $T_{N} \rightarrow T$ in \mathcal{S}^{\prime} (prove this!). Since the Fourier transform is a continuous operator on \mathcal{S}^{\prime}, we then know that \check{T} is the limit of the sequence $\left(\check{T}_{N}\right)_{N=1}^{\infty}$.

Since $T_{N} \in L^{1}$, we can compute \check{T}_{N} by directly evaluating the integral. We find that

$$
\check{T}_{N}(x)=\beta \frac{1-\cos (N x)}{x}
$$

for some constant β. In a distributional sense, this is equivalent to saying that

$$
\check{T}_{N}(x)=\beta \mathrm{PV}(1 / x)-\beta \cos (N x) \mathrm{PV}(1 / x) .
$$

It only remains to prove that $\cos (N x) \operatorname{PV}(1 / x) \rightarrow 0$ in \mathcal{S}^{\prime}. We find that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\langle\cos (N x) \operatorname{PV}(1 / x), \varphi\rangle=\lim _{N \rightarrow \infty}\langle\mathrm{PV}(1 / x), \cos (N x) \varphi\rangle=\cdots= \\
& \quad \lim _{N \rightarrow \infty} \int_{0}^{\infty} \cos (N x) \frac{\varphi(x)-\varphi(-x)}{x} d x=\cdots \text { partial integration } \cdots=0 .
\end{aligned}
$$

Lots of details to fill in ...

Problem 12.2:

(a) Use that $A \backslash B=A \cap B^{\mathrm{c}}=\left(A^{\mathrm{c}} \cup B\right)^{\mathrm{c}}$.
(b) Split B into two well-chosen disjoint sets and use additivity.
(c) Split $A \cup B$ into three well-chosen disjoint sets and use additivity. (I think we did this one in class.)

Problem 12.3: The trick is to write $\bigcup_{n=1}^{\infty} A_{n}$ as a disjoint union. For $n=1,2,3, \ldots$ set $B_{n}=A_{n+1} \backslash A_{n}$. Then

$$
\bigcup_{n=1}^{\infty} A_{n}=A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right),
$$

where there union on the right is a disjoint one. Now use additivity twice:

$$
\begin{aligned}
& \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu\left(A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)\right)=\mu\left(A_{1}\right)+\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \\
& \quad=\lim _{N \rightarrow \infty}\left(\mu\left(A_{1}\right)+\sum_{n=1}^{N} \mu\left(B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{1} \cup\left(\bigcup_{n=1}^{N} B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{N}\right) .
\end{aligned}
$$

For the second part, set $C=\cap_{n=1}^{\infty} A_{n}$ and $C_{n}=A_{n} \backslash A_{n+1}$. Then

$$
\mu\left(A_{N}\right)=\mu\left(C \cup\left(\bigcup_{n=N}^{\infty} C_{n}\right)\right)=\mu(C)+\sum_{n=N}^{\infty} \mu\left(C_{n}\right) .
$$

Since $\infty>\mu\left(A_{1}\right) \geq \sum_{n=1}^{\infty} \mu\left(C_{n}\right)$, we find that

$$
\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} \mu\left(C_{n}\right)=0
$$

which completes the proof. For the counterexample, consider $X=\mathbb{R}^{2}$, and $A_{n}=$ $\left\{x=\left(x_{1}, x_{2}\right):\left|x_{2}\right|<1 / n\right\}$. Then $\mu\left(A_{n}\right)=\infty$ for all n, but $\cap_{n=1}^{\infty} A_{n}$ is the x_{1}-axis, which has measure zero.

Problem 12.5: Straight-forward.

Problem 12.7:

Reflexivity: It is obvious that $f(x)=f(x)$ a.e.
Symmetry: If $f(x)=g(x)$ a.e., then obviously $g(x)=f(x)$ a.e.
Transitivity: Suppose that $f(x)=g(x)$ a.e. and that $g(x)=h(x)$ a.e. Set

$$
\begin{aligned}
A & =\{x: f(x) \neq g(x)\} \\
B & =\{x: g(x) \neq h(x)\} \\
C & =\{x: f(x) \neq h(x)\} .
\end{aligned}
$$

We know that $\mu(A)=\mu(B)=0$, and we want to prove that $\mu(C)=0$. It is clearly the case that $C \subseteq A \cup B$, and then it follows directly that $\mu(C) \leq \mu(A)+\mu(B)=0$.

