
Applied Analysis (APPM 5450): Final – Solutions

Problem 1: No motivation required for these questions. 2p each.

(a) State Hölder’s inequality.

(b) Define what it means for a sequence (ϕn)∞n=1 of Schwartz functions to converge
in S(R).

(c) Let H be a Hilbert space, and let (An)∞n=1 be a sequence of operators in B(H).
Define what it means for An to converge strongly to some operator A ∈ B(H).

(d) Let (X, µ) be a σ-finite measure space. For which numbers p in the interval
[1, ∞] is it necessarily the case that (Lp(X, µ))∗ = Lq(X, µ), where q is such that
(1/p) + (1/q) = 1. For which numbers p is Lp(X, µ) necessarily reflexive?

(e) Let H be a Hilbert space, and let A be a linear bounded operator on H. Give a
formula that relates the range of A to the kernel of A∗.

(f) Let H be a Hilbert space and let A ∈ B(H) be a self-adjoint operator. Let H1

be an invariant subspace of A. Is H⊥
1 necessarily an invariant subspace of A? Is H⊥

1

necessarily an invariant subspace of A if A is skew-adjoint instead of self-adjoint?

(g) Let H be a Hilbert space, and let A ∈ B(H) be self-adjoint and compact. What
can you say about σc(A)?

(a) Let p, q ∈ [1,∞] be such that (1/p)+(1/q) = 1, let (X, µ) be a measure space, let
f ∈ Lp(X, µ), and let g ∈ Lq(X, µ). Then fg ∈ L1(X, µ) and ||f g||1 ≤ ||f ||p ||g||q.
(b) ϕn → ϕ if for every α ∈ Nd and k ∈ N, we have limn→∞ ||ϕ−ϕn||α,k = 0, where
||ϕ||α,k = supx(1 + |x|2)k/2|∂αϕ(x)|.
(c) An → A strongly if for every x ∈ H we have limn→∞ ||Ax−An x|| = 0.

(d) If p ∈ [1,∞) then (Lp)∗ necessarily equals Lq. If p ∈ (1,∞), then Lp is necessarily
reflexive.

(e) ran(A) = (ker(A∗))⊥

(f) Yes, and yes.

(g) Either σc(A) = {0} or σc(A) = ∅.



Problem 2: Let H be a Hilbert space, and let P ∈ B(H) be an operator such that
P 2 = P . Prove that the statements (S1) and (S2) given below are equivalent: (4p)

(S1): (ran(P ))⊥ = ker(P ).

(S2): 〈P x, y〉 = 〈x, P y〉 for all x, y ∈ H.

(S1) ⇒ (S2): Assume that (S1) holds. First note that for any z ∈ H, we have
(I − P )z ∈ ker(P ) since P (I − P )z = Pz − P 2z = Pz − Pz = 0. Then, for x, y ∈ H

〈Px, y〉 = 〈Px, Py + (I − P )y〉 = 〈Px, Py〉+ 〈Px, (I − P )y〉 = 〈Px, Py〉.
The last equality used that Px ∈ ran(P ), that (I − P )y ∈ ker(P ) and assumption
(S1). Analogously

〈x, Py〉 = · · · = 〈Px, Py〉,
and so 〈Px, y〉 = 〈x, Py〉.
(S2) ⇒ (S1): Assume that (S2) is true. Then

x ∈ ker(P ) ⇔ 〈Px, y〉 = 0 ∀y ⇔ 〈x, Py〉 = 0 ∀y ⇔ x ∈ (ran(P ))⊥.



Problem 3: Let δ ∈ S(R)∗ denote the Dirac delta-function as usual, let δ′ denote
the distributional derivative of δ, and define for a positive integer n the distribution
Tn ∈ S(R)∗ by Tn(x) = sin(nx) δ′(x).

(a) Calculate the Fourier transform T̂n of Tn. (2p)

(b) Does the sequence (T̂n)∞n=1 converge in S(R)∗? (2p)

Hint: You may want to start by simplifying the expression for Tn.

First we simplify the expression for Tn. If ϕ ∈ S, then

〈Tn, ϕ〉 = 〈sin(nx)δ′, ϕ〉 = 〈δ′, sin(nx)ϕ〉 = −〈δ, ∂(sin(nx)ϕ)〉
− 〈δ, n cos(nx)ϕ + sin(nx)ϕ′〉 = −n cos(0)ϕ(0)− sin(n)ϕ′(0) = −nϕ(0).

Consequently, Tn = −n δ.

(a) Since δ̂ = 1/
√

2π, we find that T̂n = −n/
√

2π.

(b) If ϕ ∈ S, then

〈T̂n, ϕ〉 = 〈− n√
2π

, ϕ〉 = − n√
2π

∫ ∞

−∞
ϕ(x) dx.

When
∫

ϕ 6= 0, we have 〈T̂n, ϕ〉 → ±∞, so T̂n cannot converge.



Problem 4: Let p ∈ [1, ∞), let g be a function in Lp(R), and let (fn)∞n=1 be
measurable functions from R to R such that

∞∑

n=1

|fn(x)| ≤ g(x), a.e.

Set hN =
N∑

n=1

fn. Prove that the sequence (hN )∞N=1 converges in Lp(R). (5p)

Set Ω1 = {x : |g(x)| < ∞}. Then µ(Ωc
1) = 0, since g ∈ Lp.

Set Ω2 = {x :
∑ |fn(x)| < |g(x)|}, then µ(Ωc

2) = 0 by assumption.

Set Ω = Ω1 ∩ Ω2. Then µ(Ωc) ≤ µ(Ωc
1) + µ(Ωc

2) = 0.

For x ∈ Ω, we have
∑∞

n=1 |fn(x)| < ∞, so we the following formula defines a finite
valued function:

h(x) =
{ ∑∞

n=1 fn(x), x ∈ Ω,
0, x ∈ Ωc.

It follows immediately that |h(x)| ≤ g(x) for all x, and so h ∈ Lp.

We will prove that ||h− hN ||p → 0 as N →∞. We have

||h− hN ||pp =
∫

R

∣∣∣h(x)−
N∑

n=1

fn(x)
∣∣∣
p
dx.

Note that

(a)
∣∣∣h(x)−

N∑

n=1

fn(x)
∣∣∣
p
→ 0, pointwise,

and that

(b)
∣∣∣h(x) −

N∑

n=1

fn(x)
∣∣∣
p
≤

(
|h(x)| +

N∑

n=1

|fn(x)|
)p

≤ (2 g(x))p = 2p g(x)p. Since

g ∈ Lp, we know that
∫

2p gp < ∞, and so in light of (a) and (b), we can invoke the
Lebesgue dominated convergence theorem:

lim
N→∞

||h− hN ||pp =
∫

R
lim

N→∞

∣∣∣h(x)−
N∑

n=1

fn(x)
∣∣∣
p
dx =

∫ ∞

−∞
0 dx = 0.



Problem 5: Consider the Hilbert space H = L2(T), let a ∈ (0, π) be a real number,
and define the operator T ∈ B(H) by

[T u](x) =
1
2
(
u(x− a) + u(a− x)

)
.

(a) Construct T ∗ and indicate whether T is self-adjoint. (2p)

(b) Prove that T is not unitary. Is T normal? (2p)

(c) Specify infinite dimensional subspaces H1 and H2 of H such that the map
T : H1 → H2 is a unitary operator. (2p)

(d) Let F : H → l2(Z) denote the Fourier transform. Determine the operator
T̂ : l2(Z) → l2(Z) given by T̂ = F T F−1. (2p)

(e) Determine σ(T ). As far as you can, classify the different parts of the spectrum
as belonging to the point, continuous, or residual spectrum. (3p)

First note that T = Sa P , where

[Pu](x) =
1
2
(u(x) + u(−x)), and [Sau](x) = u(x− a).

(In other words, P is the orthogonal projection onto the even functions, and Sa is a
simple shift operator.)

(a) T ∗ = (Sa P )∗ = P ∗ S∗a = P S−a. In other words,

[T ∗u](x) =
1
2
(
u(x + a) + u(a− x)

)
.

We see that T is not self-adjoint.

(b) T ∗ T = P S−a Sa P = P P = P and T T ∗ = Sa P P S−a = Sa P S−a so T is
neither unitary nor normal. (Note that [Sa P S−a u](x) = 1

2u(x) + 1
2u(−x + 2a).)

(c) Let H1 denote the subspace of even functions, and let H2 denote the space of
functions that are even around the point x = a (so that f ∈ H2 ⇔ f(a − x) =
f(a + x) for all x). Then T |H1 = Sa which is clearly unitary.

(d) Let αn denote the Fourier coefficients of a function u, and set v = T u. Then we
calculate Fourier coefficients γn of v:

γn = β

∫

T
e−inx 1

2
(
u(x− a) + u(a− x)

)
dx

= β

∫

T
e−in(y+a) 1

2
u(y) dy + β

∫

T
e−in(a−y) 1

2
u(y) dy = e−ina 1

2
(αn + α−n).

So T̂ : (αn) 7→ (γn) where γn = e−ina(αn + α−n)/2.



(e) Since F is a unitary map, the spectrum of T is identical to the spectrum of T̂ .
We can therefore answer the question by determining the spectrum of T̂ .

Recall that a number λ ∈ C belongs to σ(T̂ ) if the operator T̂ − λI does not have a
bounded inverse. We therefore consider the equation

(1)
(
T̂ − λI

)
α = γ.

Setting µ = e−ina, we write equation (1) componentwise as

(1− λ) α0 = γ0,(2) [
1
2µ− λ 1

2µ
1
2 µ̄ 1

2 µ̄− λ

] [
αn

α−n

]
=

[
γn

γ−n

]
, n 6= 0.(3)

Case 1 – λ = 1: In this case, equation (2) does not have a solution. In fact, if v is
any constant vector, then T v = v, so 1 ∈ σp(T ).

Case 2 – λ = 0: In this case, equation (3) is singular. In fact, if v is an odd function
(so that αn = −α−n) then T v = 0, so 0 ∈ σp(T ).

Case 3 – λ 6= 0, 1: For this case, equation (2) is invertible, and (3) is invertible if
and only if

0 6= (
1
2µ− λ

)(
1
2 µ̄− λ

)− 1
4µµ̄.

Simplifying, we obtain the equation

0 6= λ
(
λ− 1

2(µ + µ̄)
)
.

We find that (3) is singular if λ = 0 or if

λ = 1
2

(
µ + µ̄

)
= cos(na).

The eigenvector corresponding to λ = cos(na) is

vn = αn einx + α−n e−inx = µeinx + µ̄e−inx = ein(x−a) + e−in(x−a) = 2 cos(nx− na).

Thus σp(T ) = {0} ∪ {1} ∪ {cos(na)}∞n=1.

Remark: If you got this far, you got full credit.

If λ ∈ C is a number such that dist(λ, σp(T )) > 0, then the system (2,3) is boundedly
invertible, so λ ∈ ρ(T ). In contrast, if λ ∈ σp(T ) then T̂ − λI is injective, but not
boundedly invertible. In fact, if λnj → λ as j → ∞, we have ||(T − λI) vnj || =
||(λnj − λ) vnj || → 0 so λ ∈ σc(T ).

To summarize:

σp(T ) = {0} ∪ {1} ∪ {cos(na)}∞n=1

σc(T ) = σp(T ) \ σp(T )

σr(T ) = ∅
Remark 1: If a/π is a rational number, then σp(T ) is finite, and σ(T ) = σp(T ).

Remark 2: Since T is not normal, its eigenvalue decomposition is not of much
value. Of more interest is the decomposition T = Sa P . It is an analogue of the
singular value decomposition of T and specifies exactly the action of T , its null-space,
its range, and so on.


