Applied Analysis (APPM 5450): Final - Solutions

Problem 1: No motivation required for these questions. 2p each.
(a) State Hölder's inequality.
(b) Define what it means for a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ of Schwartz functions to converge in $\mathcal{S}(\mathbb{R})$.
(c) Let H be a Hilbert space, and let $\left(A_{n}\right)_{n=1}^{\infty}$ be a sequence of operators in $\mathcal{B}(H)$. Define what it means for A_{n} to converge strongly to some operator $A \in \mathcal{B}(H)$.
(d) Let (X, μ) be a σ-finite measure space. For which numbers p in the interval $[1, \infty]$ is it necessarily the case that $\left(L^{p}(X, \mu)\right)^{*}=L^{q}(X, \mu)$, where q is such that $(1 / p)+(1 / q)=1$. For which numbers p is $L^{p}(X, \mu)$ necessarily reflexive?
(e) Let H be a Hilbert space, and let A be a linear bounded operator on H. Give a formula that relates the range of A to the kernel of A^{*}.
(f) Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a self-adjoint operator. Let H_{1} be an invariant subspace of A. Is H_{1}^{\perp} necessarily an invariant subspace of A ? Is H_{1}^{\perp} necessarily an invariant subspace of A if A is skew-adjoint instead of self-adjoint?
(g) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$ be self-adjoint and compact. What can you say about $\sigma_{\mathrm{c}}(A)$?
(a) Let $p, q \in[1, \infty]$ be such that $(1 / p)+(1 / q)=1$, let (X, μ) be a measure space, let $f \in L^{p}(X, \mu)$, and let $g \in L^{q}(X, \mu)$. Then $f g \in L^{1}(X, \mu)$ and $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$.
(b) $\varphi_{n} \rightarrow \varphi$ if for every $\alpha \in \mathbb{N}^{d}$ and $k \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty}\left\|\varphi-\varphi_{n}\right\|_{\alpha, k}=0$, where $\|\varphi\|_{\alpha, k}=\sup _{x}\left(1+|x|^{2}\right)^{k / 2}\left|\partial^{\alpha} \varphi(x)\right|$.
(c) $A_{n} \rightarrow A$ strongly if for every $x \in H$ we have $\lim _{n \rightarrow \infty}\left\|A x-A_{n} x\right\|=0$.
(d) If $p \in[1, \infty)$ then $\left(L^{p}\right)^{*}$ necessarily equals L^{q}. If $p \in(1, \infty)$, then L^{p} is necessarily reflexive.
(e) $\overline{\operatorname{ran}(A)}=\left(\operatorname{ker}\left(A^{*}\right)\right)^{\perp}$
(f) Yes, and yes.
(g) Either $\sigma_{\mathrm{c}}(A)=\{0\}$ or $\sigma_{\mathrm{c}}(A)=\emptyset$.

Problem 2: Let H be a Hilbert space, and let $P \in \mathcal{B}(H)$ be an operator such that $P^{2}=P$. Prove that the statements (S 1) and (S 2) given below are equivalent: (4 p)
(S1): $\quad(\operatorname{ran}(P))^{\perp}=\operatorname{ker}(P)$.
(S2): $\quad\langle P x, y\rangle=\langle x, P y\rangle$ for all $x, y \in H$.
$(\mathrm{S} 1) \Rightarrow(\mathrm{S} 2)$: Assume that (S1) holds. First note that for any $z \in H$, we have $(I-P) z \in \operatorname{ker}(P)$ since $P(I-P) z=P z-P^{2} z=P z-P z=0$. Then, for $x, y \in H$

$$
\langle P x, y\rangle=\langle P x, P y+(I-P) y\rangle=\langle P x, P y\rangle+\langle P x,(I-P) y\rangle=\langle P x, P y\rangle .
$$

The last equality used that $P x \in \operatorname{ran}(P)$, that $(I-P) y \in \operatorname{ker}(P)$ and assumption (S1). Analogously

$$
\langle x, P y\rangle=\cdots=\langle P x, P y\rangle,
$$

and so $\langle P x, y\rangle=\langle x, P y\rangle$.
$(\mathrm{S} 2) \Rightarrow(\mathrm{S} 1)$: Assume that $(\mathrm{S} 2)$ is true. Then

$$
x \in \operatorname{ker}(P) \Leftrightarrow\langle P x, y\rangle=0 \forall y \Leftrightarrow\langle x, P y\rangle=0 \forall y \Leftrightarrow x \in(\operatorname{ran}(P))^{\perp} .
$$

Problem 3: Let $\delta \in \mathcal{S}(\mathbb{R})^{*}$ denote the Dirac delta-function as usual, let δ^{\prime} denote the distributional derivative of δ, and define for a positive integer n the distribution $T_{n} \in \mathcal{S}(\mathbb{R})^{*}$ by $T_{n}(x)=\sin (n x) \delta^{\prime}(x)$.
(a) Calculate the Fourier transform \hat{T}_{n} of T_{n}. (2p)
(b) Does the sequence $\left(\hat{T}_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}(\mathbb{R})^{*}$? $(2 \mathrm{p})$

Hint: You may want to start by simplifying the expression for T_{n}.

First we simplify the expression for T_{n}. If $\varphi \in \mathcal{S}$, then

$$
\begin{aligned}
\left\langle T_{n}, \varphi\right\rangle & =\left\langle\sin (n x) \delta^{\prime}, \varphi\right\rangle=\left\langle\delta^{\prime}, \sin (n x) \varphi\right\rangle=-\langle\delta, \partial(\sin (n x) \varphi)\rangle \\
& -\left\langle\delta, n \cos (n x) \varphi+\sin (n x) \varphi^{\prime}\right\rangle=-n \cos (0) \varphi(0)-\sin (n) \varphi^{\prime}(0)=-n \varphi(0) .
\end{aligned}
$$

Consequently, $T_{n}=-n \delta$.
(a) Since $\hat{\delta}=1 / \sqrt{2 \pi}$, we find that $\hat{T}_{n}=-n / \sqrt{2 \pi}$.
(b) If $\varphi \in \mathcal{S}$, then

$$
\left\langle\hat{T}_{n}, \varphi\right\rangle=\left\langle-\frac{n}{\sqrt{2 \pi}}, \varphi\right\rangle=-\frac{n}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) d x .
$$

When $\int \varphi \neq 0$, we have $\left\langle\hat{T}_{n}, \varphi\right\rangle \rightarrow \pm \infty$, so \hat{T}_{n} cannot converge.

Problem 4: Let $p \in[1, \infty)$, let g be a function in $L^{p}(\mathbb{R})$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be measurable functions from \mathbb{R} to \mathbb{R} such that

$$
\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \leq g(x), \quad \text { a.e. }
$$

Set $h_{N}=\sum_{n=1}^{N} f_{n}$. Prove that the sequence $\left(h_{N}\right)_{N=1}^{\infty}$ converges in $L^{p}(\mathbb{R}) .(5 \mathrm{p})$

Set $\Omega_{1}=\{x:|g(x)|<\infty\}$. Then $\mu\left(\Omega_{1}^{\mathrm{c}}\right)=0$, since $g \in L^{p}$.
Set $\Omega_{2}=\left\{x: \sum\left|f_{n}(x)\right|<|g(x)|\right\}$, then $\mu\left(\Omega_{2}^{c}\right)=0$ by assumption.
Set $\Omega=\Omega_{1} \cap \Omega_{2}$. Then $\mu\left(\Omega^{\mathrm{c}}\right) \leq \mu\left(\Omega_{1}^{\mathrm{c}}\right)+\mu\left(\Omega_{2}^{\mathrm{c}}\right)=0$.
For $x \in \Omega$, we have $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty$, so we the following formula defines a finite valued function:

$$
h(x)= \begin{cases}\sum_{n=1}^{\infty} f_{n}(x), & x \in \Omega, \\ 0, & x \in \Omega^{c} .\end{cases}
$$

It follows immediately that $|h(x)| \leq g(x)$ for all x, and so $h \in L^{p}$.
We will prove that $\left\|h-h_{N}\right\|_{p} \rightarrow 0$ as $N \rightarrow \infty$. We have

$$
\left\|h-h_{N}\right\|_{p}^{p}=\int_{\mathbb{R}}\left|h(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{p} d x .
$$

Note that
(a) $\left|h(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{p} \rightarrow 0, \quad$ pointwise,
and that
(b) $\left|h(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{p} \leq\left(|h(x)|+\sum_{n=1}^{N}\left|f_{n}(x)\right|\right)^{p} \leq(2 g(x))^{p}=2^{p} g(x)^{p}$. Since
$g \in L^{p}$, we know that $\int 2^{p} g^{p}<\infty$, and so in light of (a) and (b), we can invoke the Lebesgue dominated convergence theorem:

$$
\lim _{N \rightarrow \infty}\left\|h-h_{N}\right\|_{p}^{p}=\int_{\mathbb{R}} \lim _{N \rightarrow \infty}\left|h(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{p} d x=\int_{-\infty}^{\infty} 0 d x=0 .
$$

Problem 5: Consider the Hilbert space $H=L^{2}(\mathbb{T})$, let $a \in(0, \pi)$ be a real number, and define the operator $T \in \mathcal{B}(H)$ by

$$
[T u](x)=\frac{1}{2}(u(x-a)+u(a-x)) .
$$

(a) Construct T^{*} and indicate whether T is self-adjoint. (2p)
(b) Prove that T is not unitary. Is T normal? (2p)
(c) Specify infinite dimensional subspaces H_{1} and H_{2} of H such that the map $T: H_{1} \rightarrow H_{2}$ is a unitary operator. (2p)
(d) Let $\mathcal{F}: H \rightarrow l^{2}(\mathbb{Z})$ denote the Fourier transform. Determine the operator $\hat{T}: l^{2}(\mathbb{Z}) \rightarrow l^{2}(\mathbb{Z})$ given by $\hat{T}=\mathcal{F} T \mathcal{F}^{-1} .(2 \mathrm{p})$
(e) Determine $\sigma(T)$. As far as you can, classify the different parts of the spectrum as belonging to the point, continuous, or residual spectrum. (3p)

First note that $T=S_{a} P$, where

$$
[P u](x)=\frac{1}{2}(u(x)+u(-x)), \quad \text { and } \quad\left[S_{a} u\right](x)=u(x-a) .
$$

(In other words, P is the orthogonal projection onto the even functions, and S_{a} is a simple shift operator.)
(a) $T^{*}=\left(S_{a} P\right)^{*}=P^{*} S_{a}^{*}=P S_{-a}$. In other words,

$$
\left[T^{*} u\right](x)=\frac{1}{2}(u(x+a)+u(a-x)) .
$$

We see that T is not self-adjoint.
(b) $T^{*} T=P S_{-a} S_{a} P=P P=P$ and $T T^{*}=S_{a} P P S_{-a}=S_{a} P S_{-a}$ so T is neither unitary nor normal. (Note that $\left[S_{a} P S_{-a} u\right](x)=\frac{1}{2} u(x)+\frac{1}{2} u(-x+2 a)$.)
(c) Let H_{1} denote the subspace of even functions, and let H_{2} denote the space of functions that are even around the point $x=a$ (so that $f \in H_{2} \Leftrightarrow f(a-x)=$ $f(a+x)$ for all $x)$. Then $\left.T\right|_{H_{1}}=S_{a}$ which is clearly unitary.
(d) Let α_{n} denote the Fourier coefficients of a function u, and set $v=T u$. Then we calculate Fourier coefficients γ_{n} of v :

$$
\begin{aligned}
\gamma_{n}=\beta & \int_{\mathbb{T}} e^{-i n x} \frac{1}{2}(u(x-a)+u(a-x)) d x \\
& =\beta \int_{\mathbb{T}} e^{-i n(y+a)} \frac{1}{2} u(y) d y+\beta \int_{\mathbb{T}} e^{-i n(a-y)} \frac{1}{2} u(y) d y=e^{-i n a} \frac{1}{2}\left(\alpha_{n}+\alpha_{-n}\right) .
\end{aligned}
$$

So $\hat{T}:\left(\alpha_{n}\right) \mapsto\left(\gamma_{n}\right)$ where $\gamma_{n}=e^{-i n a}\left(\alpha_{n}+\alpha_{-n}\right) / 2$.
(e) Since \mathcal{F} is a unitary map, the spectrum of T is identical to the spectrum of \hat{T}. We can therefore answer the question by determining the spectrum of \hat{T}.

Recall that a number $\lambda \in \mathbb{C}$ belongs to $\sigma(\hat{T})$ if the operator $\hat{T}-\lambda I$ does not have a bounded inverse. We therefore consider the equation

$$
\begin{equation*}
(\hat{T}-\lambda I) \alpha=\gamma . \tag{1}
\end{equation*}
$$

Setting $\mu=e^{-i n a}$, we write equation (1) componentwise as

$$
\begin{gather*}
(1-\lambda) \alpha_{0}=\gamma_{0}, \tag{2}\\
{\left[\begin{array}{cc}
\frac{1}{2} \mu-\lambda & \frac{1}{2} \mu \\
\frac{1}{2} \bar{\mu} & \frac{1}{2} \bar{\mu}-\lambda
\end{array}\right]\left[\begin{array}{c}
\alpha_{n} \\
\alpha_{-n}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{n} \\
\gamma_{-n}
\end{array}\right], \quad n \neq 0 .} \tag{3}
\end{gather*}
$$

Case $1-\lambda=1$: In this case, equation (2) does not have a solution. In fact, if v is any constant vector, then $T v=v$, so $1 \in \sigma_{\mathrm{p}}(T)$.

Case 2 $-\lambda=0$: In this case, equation (3) is singular. In fact, if v is an odd function (so that $\alpha_{n}=-\alpha_{-n}$) then $T v=0$, so $0 \in \sigma_{\mathrm{p}}(T)$.

Case $3-\lambda \neq 0,1$: For this case, equation (2) is invertible, and (3) is invertible if and only if

$$
0 \neq\left(\frac{1}{2} \mu-\lambda\right)\left(\frac{1}{2} \bar{\mu}-\lambda\right)-\frac{1}{4} \mu \bar{\mu} .
$$

Simplifying, we obtain the equation

$$
0 \neq \lambda\left(\lambda-\frac{1}{2}(\mu+\bar{\mu})\right)
$$

We find that (3) is singular if $\lambda=0$ or if

$$
\lambda=\frac{1}{2}(\mu+\bar{\mu})=\cos (n a) .
$$

The eigenvector corresponding to $\lambda=\cos (n a)$ is
$v_{n}=\alpha_{n} e^{i n x}+\alpha_{-n} e^{-i n x}=\mu e^{i n x}+\bar{\mu} e^{-i n x}=e^{i n(x-a)}+e^{-i n(x-a)}=2 \cos (n x-n a)$.
Thus $\sigma_{\mathrm{p}}(T)=\{0\} \cup\{1\} \cup\{\cos (n a)\}_{n=1}^{\infty}$.
Remark: If you got this far, you got full credit.
If $\lambda \in \mathbb{C}$ is a number such that $\operatorname{dist}\left(\lambda, \sigma_{\mathrm{p}}(T)\right)>0$, then the system $(2,3)$ is boundedly invertible, so $\lambda \in \rho(T)$. In contrast, if $\lambda \in \overline{\sigma_{\mathrm{p}}(T)}$ then $\hat{T}-\lambda I$ is injective, but not boundedly invertible. In fact, if $\lambda_{n_{j}} \rightarrow \lambda$ as $j \rightarrow \infty$, we have $\left\|(T-\lambda I) v_{n_{j}}\right\|=$ $\left\|\left(\lambda_{n_{j}}-\lambda\right) v_{n_{j}}\right\| \rightarrow 0$ so $\lambda \in \sigma_{\mathrm{c}}(T)$.

To summarize:
$\sigma_{\mathrm{p}}(T)=\{0\} \cup\{1\} \cup\{\cos (n a)\}_{n=1}^{\infty}$
$\sigma_{\mathrm{c}}(T)=\overline{\sigma_{\mathrm{p}}(T)} \backslash \sigma_{\mathrm{p}}(T)$
$\sigma_{\mathrm{r}}(T)=\emptyset$
Remark 1: If a / π is a rational number, then $\sigma_{\mathrm{p}}(T)$ is finite, and $\sigma(T)=\sigma_{\mathrm{p}}(T)$.
Remark 2: Since T is not normal, its eigenvalue decomposition is not of much value. Of more interest is the decomposition $T=S_{a} P$. It is an analogue of the singular value decomposition of T and specifies exactly the action of T, its null-space, its range, and so on.

