
Applied Analysis (APPM 5450): Midterm 3 – Solutions
5.00pm – 6.20pm, Apr 24, 2006. Closed books.

Note: In your solutions, explicitly state if you use an integral sign that does not
refer to a Lebesgue integral. (All integrals in the exam are Lebesgue integrals.)

Problem 1: In this question, (X,A, µ) denotes a measure space.

(a) What axioms must A satisfy? (2p)

(b) What axioms must µ satisfy? (2p)

(c) Prove that if Ω1, Ω2 ∈ A, then µ(Ω1 ∪ Ω2) ≤ µ(Ω1) + µ(Ω2). Given an exact
condition for when equality occurs. (“Equality occurs if and only if . . . ”) (2p)

(d) Define the Lebesgue integral of a measurable non-negative function. (2p)

(e) Define the “essential supremum” of a measurable function f on X. (2p)

(f) For which extended real numbers p are the simple functions dense in Lp(Rd)?
When is C∞

c (Rd) dense in Lp? (2p)

(a,b) See textbook.

(c) Set A = Ω1\Ω2, B = Ω2\Ω1, and C = Ω1 ∩ Ω2. Then A, B, and C are all
disjoint, and Ω1 ∪ Ω2 = A ∪B ∪ C. By the additivity of µ, we get

µ(Ω1 ∪ Ω2) = µ(A ∪B ∪ C) = µ(A) + µ(B) + µ(C).

Moreover, Ω1 = A ∪ C and Ω2 = B ∪ C so

µ(Ω1) + µ(Ω2) = µ(A ∪ C) + µ(B ∪ C) = µ(A) + µ(B) + 2µ(C).

Since µ(C) ≥ 0, it follows that µ(Ω1 ∪ Ω2) ≤ µ(Ω1) + µ(Ω2). Equality holds if and
only if µ(C) = 0; in other words, if Ω1 ∩ Ω2 is a null-set.

(d) For a simple function ϕ =
∑n

j=1 cj χΩj , we define
∫

ϕ =
∑n

j=1 cj µ(Ωj). For a
general non-negative f , we define

∫
f = sup{∫ ϕ : ϕ is simple, and ϕ ≤ f}.

(e) esssup
x∈X

f(x) = inf{M : µ({x : f(x) ≥ M}) = 0} = inf{M : f(x) ≤ M a.e.}.

(f) The simple functions are dense in Lp(Rd) for all p ∈ [1,∞].
C∞

c (Rd) is dense in Lp(Rd) for all p ∈ [1,∞).



Problem 2: Define the function f on R2 by f(x1, x2) = x1 x2
2. Define a tempered

distribution Tf by 〈Tf , ϕ〉 =
∫
R2 f(x) ϕ(x) dx. What is the Fourier transform of Tf?

Motivate your answer carefully. (4p)

Let U denote the tempered distribution 〈U, ϕ〉 =
∫

ϕ. Recall that Û = 2πδ (since
〈Û , ϕ〉 = 〈U, ϕ̂〉 =

∫
ϕ̂, and by the Fourier inversion formula

∫
ϕ̂ = 2πϕ(0)).

Note that Tf = x1 x2
2 U = −i(−ix)(1,2) U .

Using the formula ∂α T̂ = F [(−ix)α T ] with α = (1, 2), we find that

F [Tf ] = F [−i(−ix)αU ] = −i∂αÛ = −i 2π
∂3

(∂x1)(∂x2)2
δ.

In other words, 〈T̂f , ϕ〉 = −i 2π
∂3ϕ

(∂x1)(∂x2)2
(0).



Problem 3: Calculate the limit

lim
n→∞

∫ n+1

n

√
x tan(1/

√
x) dx.

Motivate your answer carefully. (4p)

Changing variables to y = x− n, we have

In =
∫ n+1

n

√
x tan

1√
x

dx =
∫ 1

0

√
y + n tan

1√
y + n

dy.

Set fn(y) =
√

y + n tan 1√
y+n

. Then, for every y ∈ [0, 1], we have lim
n→∞ fn(y) = 1.

Since tan t ≤ 2t when t ∈ [0, 1], we have |fn(y)| ≤ 2 when n ≥ 1, and y ∈ [0, 1].

Since |fn| is bounded by the integrable function 2χ[0, 1], the Lebesgue dominated
convergence theorem applies, and we obtain

lim
n→∞ In = lim

n→∞

∫ 1

0
fn(y) dy =

∫ 1

0
lim

n→∞ fn(y) dy =
∫ 1

0
1 dy = 1.

Remark: Lebesgue dominated convergence is overkill. It is trivial to show that
fn → 1 in C([0, 1]) (i.e. uniformly). It then follows immediately that

lim
n→∞

∫
fn =

∫
1 = 1.



Problem 4: Recall that for s ∈ [0,∞), the Sobolev space Hs(Rd) is defined as the
set of all functions f ∈ L2(Rd) such that (1 + |t|2)s/2 f̂(t) ∈ L2. Prove that if s is
large enough, then Hs(Rd) ⊆ C0(Rd). (4p)

The Riemann-Lebesgue lemma says that if g ∈ L1(Rd), then ĝ ∈ C0(Rd). It follows
trivially that in order to prove that f ∈ C0, it is sufficient to prove that f̂ ∈ L1.

Assume that f ∈ Hs for some s ∈ [0,∞). We have

||f̂ ||L1 =
∫
|f̂ | =

∫
|f̂ | (1 + |t|2)s/2 1

(1 + |t|2)s/2
.

Using the Cauchy-Schwartz inequality, we then find that

||f̂ ||L1 ≤
(∫

|f̂ |2 (1 + |t|2)s

)1/2 (∫
1

(1 + |t|2)s

)1/2

= ||f ||Hs

(∫
1

(1 + |t|2)s

)1/2

.

Now simply note that∫
1

(1 + |t|2)s
= [Area of unit sphere in Rd]×

∫ ∞

0

1
(1 + r2)s

rd−1 dr,

which is finite if −2s + d− 1 < −1, or, in other words, if s > d/2.


