Applied Analysis (APPM 5450): Midterm 3 - Solutions

$5.00 \mathrm{pm}-6.20 \mathrm{pm}$, Apr 24, 2006. Closed books.
Note: In your solutions, explicitly state if you use an integral sign that does not refer to a Lebesgue integral. (All integrals in the exam are Lebesgue integrals.)

Problem 1: In this question, (X, \mathcal{A}, μ) denotes a measure space.
(a) What axioms must \mathcal{A} satisfy? (2p)
(b) What axioms must μ satisfy? (2p)
(c) Prove that if $\Omega_{1}, \Omega_{2} \in \mathcal{A}$, then $\mu\left(\Omega_{1} \cup \Omega_{2}\right) \leq \mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)$. Given an exact condition for when equality occurs. ("Equality occurs if and only if ...") (2p)
(d) Define the Lebesgue integral of a measurable non-negative function. (2p)
(e) Define the "essential supremum" of a measurable function f on X. (2p)
(f) For which extended real numbers p are the simple functions dense in $L^{p}\left(\mathbb{R}^{d}\right)$? When is $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{d}\right)$ dense in L^{p} ? (2 p)
(a, b) See textbook.
(c) Set $A=\Omega_{1} \backslash \Omega_{2}, B=\Omega_{2} \backslash \Omega_{1}$, and $C=\Omega_{1} \cap \Omega_{2}$. Then A, B, and C are all disjoint, and $\Omega_{1} \cup \Omega_{2}=A \cup B \cup C$. By the additivity of μ, we get

$$
\mu\left(\Omega_{1} \cup \Omega_{2}\right)=\mu(A \cup B \cup C)=\mu(A)+\mu(B)+\mu(C) .
$$

Moreover, $\Omega_{1}=A \cup C$ and $\Omega_{2}=B \cup C$ so

$$
\mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)=\mu(A \cup C)+\mu(B \cup C)=\mu(A)+\mu(B)+2 \mu(C) .
$$

Since $\mu(C) \geq 0$, it follows that $\mu\left(\Omega_{1} \cup \Omega_{2}\right) \leq \mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)$. Equality holds if and only if $\mu(C)=0$; in other words, if $\Omega_{1} \cap \Omega_{2}$ is a null-set.
(d) For a simple function $\varphi=\sum_{j=1}^{n} c_{j} \chi_{\Omega_{j}}$, we define $\int \varphi=\sum_{j=1}^{n} c_{j} \mu\left(\Omega_{j}\right)$. For a general non-negative f, we define $\int f=\sup \left\{\int \varphi: \varphi\right.$ is simple, and $\left.\varphi \leq f\right\}$.
(e) $\underset{x \in X}{\operatorname{esssup}} f(x)=\inf \{M: \mu(\{x: f(x) \geq M\})=0\}=\inf \{M: f(x) \leq M$ a.e. $\}$.
(f) The simple functions are dense in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $p \in[1, \infty]$.
$C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $p \in[1, \infty)$.

Problem 2: Define the function f on \mathbb{R}^{2} by $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2}$. Define a tempered distribution T_{f} by $\left\langle T_{f}, \varphi\right\rangle=\int_{\mathbb{R}^{2}} f(x) \varphi(x) d x$. What is the Fourier transform of T_{f} ? Motivate your answer carefully. (4p)

Let U denote the tempered distribution $\langle U, \varphi\rangle=\int \varphi$. Recall that $\hat{U}=2 \pi \delta$ (since $\langle\hat{U}, \varphi\rangle=\langle U, \hat{\varphi}\rangle=\int \hat{\varphi}$, and by the Fourier inversion formula $\left.\int \hat{\varphi}=2 \pi \varphi(0)\right)$.

Note that $T_{f}=x_{1} x_{2}^{2} U=-i(-i x)^{(1,2)} U$.
Using the formula $\partial^{\alpha} \hat{T}=\mathcal{F}\left[(-i x)^{\alpha} T\right]$ with $\alpha=(1,2)$, we find that

$$
\mathcal{F}\left[T_{f}\right]=\mathcal{F}\left[-i(-i x)^{\alpha} U\right]=-i \partial^{\alpha} \hat{U}=-i 2 \pi \frac{\partial^{3}}{\left(\partial x_{1}\right)\left(\partial x_{2}\right)^{2}} \delta .
$$

In other words, $\left\langle\hat{T}_{f}, \varphi\right\rangle=-i 2 \pi \frac{\partial^{3} \varphi}{\left(\partial x_{1}\right)\left(\partial x_{2}\right)^{2}}(0)$.

Problem 3: Calculate the limit

$$
\lim _{n \rightarrow \infty} \int_{n}^{n+1} \sqrt{x} \tan (1 / \sqrt{x}) d x
$$

Motivate your answer carefully. (4p)

Changing variables to $y=x-n$, we have

$$
I_{n}=\int_{n}^{n+1} \sqrt{x} \tan \frac{1}{\sqrt{x}} d x=\int_{0}^{1} \sqrt{y+n} \tan \frac{1}{\sqrt{y+n}} d y .
$$

Set $f_{n}(y)=\sqrt{y+n} \tan \frac{1}{\sqrt{y+n}}$. Then, for every $y \in[0,1]$, we have $\lim _{n \rightarrow \infty} f_{n}(y)=1$.
Since $\tan t \leq 2 t$ when $t \in[0,1]$, we have $\left|f_{n}(y)\right| \leq 2$ when $n \geq 1$, and $y \in[0,1]$.
Since $\left|f_{n}\right|$ is bounded by the integrable function $2 \chi_{[0,1]}$, the Lebesgue dominated convergence theorem applies, and we obtain

$$
\lim _{n \rightarrow \infty} I_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(y) d y=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(y) d y=\int_{0}^{1} 1 d y=1 .
$$

Remark: Lebesgue dominated convergence is overkill. It is trivial to show that $f_{n} \rightarrow 1$ in $C([0,1])$ (i.e. uniformly). It then follows immediately that

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int 1=1
$$

Problem 4: Recall that for $s \in[0, \infty)$, the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ is defined as the set of all functions $f \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $\left(1+|t|^{2}\right)^{s / 2} \hat{f}(t) \in L^{2}$. Prove that if s is large enough, then $H^{s}\left(\mathbb{R}^{d}\right) \subseteq C_{0}\left(\mathbb{R}^{d}\right)$. (4 p)

The Riemann-Lebesgue lemma says that if $g \in L^{1}\left(\mathbb{R}^{d}\right)$, then $\hat{g} \in C_{0}\left(\mathbb{R}^{d}\right)$. It follows trivially that in order to prove that $f \in C_{0}$, it is sufficient to prove that $\hat{f} \in L^{1}$.

Assume that $f \in H^{s}$ for some $s \in[0, \infty)$. We have

$$
\|\hat{f}\|_{L^{1}}=\int|\hat{f}|=\int|\hat{f}|\left(1+|t|^{2}\right)^{s / 2} \frac{1}{\left(1+|t|^{2}\right)^{s / 2}}
$$

Using the Cauchy-Schwartz inequality, we then find that

$$
\|\hat{f}\|_{L^{1}} \leq\left(\int|\hat{f}|^{2}\left(1+|t|^{2}\right)^{s}\right)^{1 / 2}\left(\int \frac{1}{\left(1+|t|^{2}\right)^{s}}\right)^{1 / 2}=\|f\|_{H^{s}}\left(\int \frac{1}{\left(1+|t|^{2}\right)^{s}}\right)^{1 / 2}
$$

Now simply note that

$$
\int \frac{1}{\left(1+|t|^{2}\right)^{s}}=\left[\text { Area of unit sphere in } \mathbb{R}^{d}\right] \times \int_{0}^{\infty} \frac{1}{\left(1+r^{2}\right)^{s}} r^{d-1} d r
$$

which is finite if $-2 s+d-1<-1$, or, in other words, if $s>d / 2$.

