
The Implicit and Inverse Function Theorems
Notes to supplement Chapter 13.

Remark: These notes are still in draft form. Examples will be added to Section 5.
If you see any errors, please let me know.

1. Notation

Let X and Y be two normed linear spaces, and let f : X → Y be a function
defined in some neighborhood of the origin of X. We say that f(x) = o(||x||n) if

lim
x→0

||f(x)||Y
||x||nX

= 0.

Analogously, we say that f(x) = O(||x||n) if there exists some number C, and some
neighborhood G of the origin in X such that

||f(x)||Y ≤ C ||x||nX , ∀x ∈ G.

2. Differentiation on Banach Space

Recall that a function f : R→ R is “differentiable” at a point x0 if there exists a
number a such that

(1) f(x) = f(x0) + a (x− x0) + o(|x− x0|).
We usually write a = f ′(x). The right hand side of (1) is a linear approximation of
f , valid near x0. This definition can straight-forwardly be generalized to functions
between two Banach spaces.

Definition 1. Let X and Y be Banach spaces, let f be a map from X to Y , and
let x0 be a point in X. We say that f is differentiable at x0 if there exists a map
A ∈ B(X,Y ) such that

f(x) = f(x0) + A (x− x0) + o(||x− x0||).
The number A is called the “Fréchet Derivative” of f at x0. We write A = f ′(x) =
df = D f = fx.

Note that the definition makes sense even if f is defined only in a neighborhood
of x0 (it does not need to be defined on all of x).

It follows directly from the definition that if f is differentiable at x0, then it is
also continuous as x0.

The function f ′(x) is not a map from X to Y , it is a map from X to B(X,Y ).

Example 1: Let f be a function from Rn to Rm. Let fi denote the component
functions of f so that f = (f1, f2, . . . , fm). If the partial derivatives

fi,j =
∂fi

∂xj



all exist at some x0 ∈ Rn, then f is differentiable at x0 and

f ′(x0) =




f1,1(x0) f1,2(x0) · · · f1,n(x0)
f2,1(x0) f2,2(x0) · · · f2,n(x0)
...

...
...

fm,1(x0) fm,2(x0) · · · fm,n(x0)


 .

Example: Let (X, µ) be a measure space and consider the function

f : L3(X, µ) → L1(X, µ) : ϕ 7→ ϕ3.

In order to see if f is differentiable, we need to see if there exists an A ∈ B(L3, L1)
such that

(2) lim
||ψ||3→0

||f(ϕ + ψ)− f(ϕ)−Aψ||1
||ψ||3 = 0.

We have
f(ϕ + ψ) = ϕ3 + 3ϕ2 ψ + 3ϕψ2 + ψ3.

Therefore, if f is differentiable, we must have Aψ = 3ϕ2 ψ. That A is a bounded
map is clear since (applying Hölder’s inequality with p = 3, q = 2/3)

||Aψ||1 = 3
∫
|ϕ|2 |ψ| ≤ 3

(∫
|ψ|3

)1/3 (∫
|ϕ|3

)2/3

= 3 ||ψ||3 ||ϕ||23
A similar calculation shows that

||f(ϕ + ψ)− f(ϕ)−Aψ||1 = ||3 ϕψ2 + ψ3||1
≤ 3 ||ϕψ2||1 + ||ψ3||1 ≤ 3 ||ϕ||3 ||ψ||23 + ||ψ||33.

It follows that (2) holds. Thus f is differentiable, and f ′(ϕ) : ψ 7→ 3 ϕ2 ψ.

Example: Set I = [0, 1] and consider the function

f : C(I) → R : ϕ 7→
∫ 1

0
sin(ϕ(x)) dx.

The function f is differentiable at ϕ if there exists an A ∈ B(C(I), R) = C(I)∗ such
that

(3) lim
||ψ||u→0

|f(ϕ + ψ)−Aψ|
||ψ||u = 0.

We find that

f(ϕ + ψ) =
∫

sin(ϕ + ψ) =
∫

(sinϕ cosψ + cosϕ sinψ).

When ||ψ||u is small, ψ(x) is small for every x, and so cosψ = 1 + O(ψ2), and
sinψ = ψ + O(ψ2). An informal calculation then yields

f(ϕ+ψ) =
∫

((sinϕ)(1+O(ψ2))+(cosϕ)(ψ+O(ψ2))) = f(ϕ)+
∫

((cosϕ)ψ)+O(ψ2).



If f is differentiable, we must have

A : ψ 7→
∫ 1

0
cos(ϕ(x))ψ(x) dx.

It remains to prove that (3) holds. We have

f(ϕ + ψ)− f(ϕ)−A ψ =
∫ 1

0

(
sin(ϕ + ψ)− sin(ϕ)− cos(ϕ) ψ

)
dx

=
∫ 1

0
(sin(ϕ)(cos(ψ)− 1) + cos(ϕ)(sin(ψ)− ψ)) dx.

Using that |1− cos t| ≤ t2 and | sin t− t| ≤ t2 for all t ∈ R, we obtain

|f(ϕ + ψ)− f(ϕ)−Aψ| ≤
∫ 1

0
(| sinϕ(x)|+ | cosϕ(x)|) |ψ(x)|2 dx ≤ 2 ||ψ||2u.

Therefore (3) holds, and f is differentiable.

Example: Read Example 13.7 in the textbook.

Theorem 1 (Chain rule). Let X, Y , and Z denote Banach spaces. Suppose that
the functions f : X → Y , and g : Y → Z are differentiable. Then g ◦ f : X → Z is
differentiable, and

(g ◦ f)′(x) = g′(f(x)) f ′(x).

Note that all properties of the functions in Theorem 1 are local, so it would have
been sufficient to assume only that f is differentiable in some neighborhood of x,
and g is differentiable in some neighborhood of f(x).

The notion of differentiation defined in Def. 1 is the direct generalization of the
“Jacobian matrix” of multivariate analysis. We can also define a generalization of
the concept of a directional derivative:

Definition 2. Let X and Y be Banach spaces and let f denote a function from X
to Y . Letting x and u denote elements of X, we define the directional derivative of
f at x, in the direction u, by

(Duf)(x) = lim
t→0

f(x + t u)− f(x)
t

.

Note that (Duf)(x) is simply an element of Y .

Remark 1. In the environment of Banach spaces, the directional derivative is fre-
quently called a “Gâteaux derivative”. Sometimes, this term is used to denote the
vector (Duf)(x), but the text book uses a different terminology. To avoid confusion,
we will avoid the term “Gâteaux derivative”.



Example: Let f be as in Example 1, and let u ∈ Rm. Then

(Duf)(x) =




u · ∇f1(x)
u · ∇f2(x)

...
u · ∇fn(x)


 .

Note that if X and Y are Banach spaces, and f is a differentiable function from
X to Y , then

f(x + t u) = f(x) + f ′(x) (t u) + o(||t u||).
Consequently,

(Duf)(x) = f ′(x) u.

In other words, every (Fréchet) differentiable functions has directional derivatives
in all directions. The converse is not true. In fact, it is not even true in R2 as the
following example shows:

Example: Set X = R2 and Y = R. Define Ω = {(x1, x2) ∈ R2 : x2
1 < x2 < 2x2

1}
and set f = χΩ. Then (Du f)(0) exists for all u ∈ R2, but f is not even continuous
at 0.

3. Partial derivatives

Let X, Y , and Z be Banach spaces and let F be a map from X × Y to Z. Then
F is differentiable at (x̂, ŷ) ∈ X × Y if and only if there exist maps A ∈ B(X, Z)
and B ∈ B(Y, Z) such that

F (x, y) = F (x̂, ŷ) + A (x− x̂) + B (y − ŷ) + o(||x− x̂||X + ||y − ŷ||Y ).

We call the maps A and B the partial derivatives of F with respect to x and y,

A = Fx(x̂, ŷ), B = Fy(x̂, ŷ).

Note that A is simply the derivative of the map x 7→ F (x, ŷ), and similarly B is the
derivative of the map y 7→ F (x̂, y).

4. Minimization of functionals

(View this section as a large example.)

The directional derivative can be used to derive necessary conditions for a sta-
tionary point of a function. As an example, set I = [0, 1], X = C1

0 (I), and let us
consider the functional

(4) I : X → R : u 7→
∫ 1

0
L(x, u(x), u′(x)) dx,

where L = L(x, u, v) is a function that is continuously differentiable in each of its
arguments. Suppose that u ∈ X is a point where I is minimized. Then for any
ϕ ∈ X,

0 =
d

dε
I(u + εϕ) = [DϕI](u).



In other words, if u is a minimizer, then the directional derivative [DϕI](u) must be
zero for all ϕ ∈ X. For the particular functional I, we find that

d

dε
I(u + εϕ)

∣∣∣
ε=0

=
∫ 1

0

[
Lu(x, u, u′) ϕ + Lv(x, u, u′) ϕ′

]
dx.

Performing a partial integration (using that ϕ(0) = ϕ(1) = 0), we obtain

(5) 0 =
∫ 1

0

[
Lu(x, u, u′)− d

dx
Lv(x, u, u′)

]
ϕ(x) dx.

For (5) to hold for every ϕ ∈ C1
0 ([0, 1]) we must have

(6) Lu(x, u(x), u(x)′)− d

dx
Lv(x, u(x), u′(x)) = 0, x ∈ [0, 1].

That the (potentially non-linear) ODE (6) holds is a necessary condition that a
minimizer u must satisfy. This equation is called the “Euler-Lagrange” equation.
(The function L is called the “Lagrangian” of the functional I.)

Example: Read example 13.35 in the text book.

Example: Consider a particle with mass m moving in a potential field φ. At time
t, its position in Rd is u(t). The Lagrangian is the difference in kinetic and potential
energy,

L(t, u, u̇) =
1
2

m |u̇(t)|2 − φ(u(t)).

In other words,

L(t, u, v) =
1
2

m |v|2 − φ(u).

The Euler-Lagrange equations then read

−φ′(u)−m ü = 0,

which we recognize as Newton’s second law.

Example: Consider a pendulum of mass m and length L. Letting φ denote the
angle between the vertical line, and the pendulum, we find that

Ekinetic =
1
2
m (Lφ̇)2, Epotential = mgL (1− cosφ),

where g is the gravitational constant. Thus

L(φ, φ̇) =
1
2

mL2φ̇2 −mgL (1− cosφ),

and the Euler-Lagrange equations take the form, cf. (11),

φ̈ +
g

L
sinφ = 0.



5. The implicit function theorem in Rn × R (review)

Let F (x, y) be a function that maps Rn ×R to R. The implicit function theorem
gives sufficient conditions for when a level set of F can be parameterized by a function
y = f(x).

Theorem 2 (Implicit function theorem). Consider a continuously differentiable
function F : Ω × R → R, where Ω is a open subset of Rn. We write F = F (x, y),
for x ∈ Ω, and y ∈ R. Fix a point (x̂, ŷ) ∈ Ω× R. If Fy(x̂, ŷ) 6= 0, then there exists
an open set G such that x̂ ∈ G ⊆ Ω, and a function f : G → R, such that f(x̂) = ŷ,
and F (x, f(x)) = F (x̂, ŷ) for all x ∈ G. Moreover, for j = 1, . . . , n, and x ∈ G,

(7)
∂f

∂xj
(x) = − 1

Fy(x, f(x))
∂F

∂xj
(x, f(x)).

We will not prove the theorem, but note that (7) follows trivially from the chain
rule: A simple differentiation with respect to xj yields:

F (x, f(x)) = const, ⇒ Fj(x, f(x)) + fj(x) Fy(x, f(x)) = 0,

where the subscript j refers to partial differentiation with respect to xj .
For the case n = 1, the implicit function theorem yields the following results:

Theorem 3 (Inverse function theorem). Let g be a continuously differentiable func-
tion from Ω ⊆ R to R. Fix a ŷ ∈ Ω. If g′(ŷ) 6= 0, there exists a neighborhood H of
ŷ, a neighborhood G of g(ŷ), and function f defined on G (the inverse of g), such
that

(8) g(f(x)) = x, ∀x ∈ G.

Moreover,

(9) f ′(x) =
1

g′(f(x))
, ∀x ∈ G.

Proof of Theorem 3: Let g be as in the theorem, and consider the map F (x, y) =
x− g(y). Set x̂ = g(ŷ). Then Fy(x̂, ŷ) = g′(ŷ) 6= 0. Theorem 2 asserts the existence
of a function f such that F (x, f(x)) = x̂− g(ŷ) = 0 for all x in some neighborhood
G of x̂ = g(ŷ). In other words, 0 = x−g(f(x)) for all x ∈ G, which is (8). To obtain
(9), simply differentiate (8). ¤

Example: Consider the function F (x, y) = x−y2 and the level set Γ = {(x, y) : F (x, y) =
0}. Then Fy(x, y) = −2y so Fy(x, y) 6= 0 as long as y 6= 0. In other words, the
parabola x = y2 can locally be parameterized as a function of x at every point
x > 0, but not at x = 0. Similarly, the function y =

√
x be be locally inverted for

every x > 0, but not in any neighborhood of 0.

Example: Consider the function F (x, y) = x2−y2 and the level set Γ = {(x, y) : F (x, y) =
0}. What happens at the origin?

Example: Consider the function g(y) = y3. We have g′(0) = 0, so Theorem 3
cannot assure that g is locally invertible at y = 0. It is, however, since f(x) =



|x|1/3 sign(x) is a well-defined global inverse. We see that while the conditions of
Theorem 2 and 3 are sufficient, they are certainly not necessary.

Example: Consider the function F (x1, x2, y) = x2
1 + x2

2 + y2 and the level set
A = {(x1, x2, y) : F (x1, x2, y) = 1}, the unit sphere in R3. Fix a point (x̂1, x̂2, ŷ)
such that x2

1 +x2
2 < 1. Then Fy(x̂1, x̂2, ŷ) = 2ŷ 6= 0 so the implicit function theorem

implies that A can be locally parameterized as a function y = f(x1, x2) in some
neighborhood of (x̂1, x̂2). The formula (7) says that

(10) (f1, f2) = − 1
Fy

(F1, F2) = − 1
2y

(2x1, 2x2).

Note that equation (10) enables the evaluation of ∇f(x̂1, x̂2) without explicitly con-
structing f .

6. General Implicit Function Theorem

Theorem 4 (Implicit Function Theorem). Let X, Y , and Z be Banach spaces and
let Ω be an open subset of X × Y . Let F be a continuously differentiable map from
Ω to Z. If (x̂, ŷ) ∈ Ω is a point such that DyF (x̂, ŷ) is a bounded, invertible, linear
map from Y to Z, then there is an open neighborhood G of x̂, and a unique function
f : G → Y such that

F (x, f(x)) = F (x̂, ŷ), ∀ x ∈ G.

Moreover, f is continuously differentiable, and

f ′(x) = −[Fy(x, f(x))]−1 Fx(x, f(x)).

By applying the Implicit Function Theorem to the function F (x, y) = x − g(y),
we immediately obtain the Inverse Function Theorem:

Theorem 5 (Inverse Function Theorem). Suppose that X and Y are Banach spaces,
and that Ω is an open subset of Y . Let g be a continuously differentiable function
from Ω to X. Fix ŷ ∈ Ω. If g′(ŷ) has a bounded inverse, then there exists a
neighborhood G of g(ŷ), and a unique function f from G to Ω such that

g(f(x)) = x, ∀ x ∈ G.

Moreover, g is continuously differentiable, and

f ′(x) = [g′(f(x))]−1, ∀ x ∈ G.

Example (13.21 from the text book): Consider the ODE

(11) ü + sin u = h.

We assume that h is a periodic function with period T , and seek a solution u that
also has period T . We cast (11) as a functional equation by introducing the function
spaces

X = {u ∈ C2(R) : u(t) = u(t + T ) ∀t ∈ R},
Y = {u ∈ C(R) : u(t) = u(t + T ) ∀t ∈ R},



and the non-linear map

f : X → Y : u 7→ ü + sin u.

Then (11) can be formulated as follows: Given h ∈ Y , determine u ∈ X such that

(12) f(u) = h.

For h = 0, equation (12) clearly has the solution u = 0. Moreover, f is continuously
differentiable in some neighborhood of 0 since

f(u + v) = ü + v̈ + sin(u + v) = ü + sin u︸ ︷︷ ︸
=f(u)

+ v̈ + (cos u) v︸ ︷︷ ︸
=(f ′(u)) v

+O(||v||2Y ).

The map f ′(0) ∈ B(X,Y ) has a continuous inverse if and only if the equation

v̈ + v = h

has a unique solution for every h ∈ Y . We know from basic ODE theory that this
is true if and only if T 6= 2πn for any integer n. The inverse function theorem then
states the following: For every T that is not an integer multiple of 2π, there exists
an ε > 0 such that (11) has a unique, C2, T -periodic solution for every continuous,
T -periodic function h such that ||h||u < ε.

Example: Set I = [0, 1], and consider the map

f : L2(I) → L1(I) : u 7→ (1/2)u2.

Then f is continuously differentiable, with

f ′(u) : L2(I) → L1(I) : ϕ 7→ uϕ.

Note that
||f ′(u) ϕ||1 =

∫
|uϕ| ≤ ||u||2 ||ϕ||2,

so f ′(u) is continuous. Set û = 1, and v̂ = f(û) = 1. Then

f ′(û) : ϕ 7→ ϕ,

which certainly appears to be invertible. However, the map f cannot be invertible
in any neighborhood of û. To see this, we note that for any ε > 0, the functions

u1 = 2χ[0,δ] + χ[δ,1], and u2 = −2χ[0,δ] + χ[δ,1],

satisfy ||uj−û||2 < ε provided that δ < ε2/9. Consequently, f cannot be injective on
any neighborhood of û. There is no contradiction to the inverse function theorem,
however, since f ′(x) : X → Y , is not continuously invertible. There are several
(essentially equivalent) ways to verify this. The easiest is to note that f ′(x) is not
onto, since L2(I) is a strict subset of L1(I) (example: x−1/2 ∈ L1\L2). Alternatively,
one could show that the map ϕ 7→ ϕ is not a continuous map from L1 to L2. For
instance, set ϕn = nχ[0,1/n]. Then ||ϕn||1 = 1, but ||ϕn||2 =

√
n →∞.


