The Implicit and Inverse Function Theorems

Notes to supplement Chapter 13.
Remark: These notes are still in draft form. Examples will be added to Section 5. If you see any errors, please let me know.

1. Notation

Let X and Y be two normed linear spaces, and let $f: X \rightarrow Y$ be a function defined in some neighborhood of the origin of X. We say that $f(x)=o\left(\|x\|^{n}\right)$ if

$$
\lim _{x \rightarrow 0} \frac{\|f(x)\|_{Y}}{\|x\|_{X}^{n}}=0
$$

Analogously, we say that $f(x)=O\left(\|x\|^{n}\right)$ if there exists some number C, and some neighborhood G of the origin in X such that

$$
\|f(x)\|_{Y} \leq C\|x\|_{X}^{n}, \quad \forall x \in G
$$

2. Differentiation on Banach Space

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is "differentiable" at a point x_{0} if there exists a number a such that

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+a\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) . \tag{1}
\end{equation*}
$$

We usually write $a=f^{\prime}(x)$. The right hand side of (1) is a linear approximation of f, valid near x_{0}. This definition can straight-forwardly be generalized to functions between two Banach spaces.

Definition 1. Let X and Y be Banach spaces, let f be a map from X to Y, and let x_{0} be a point in X. We say that f is differentiable at x_{0} if there exists a map $A \in \mathcal{B}(X, Y)$ such that

$$
f(x)=f\left(x_{0}\right)+A\left(x-x_{0}\right)+o\left(\left\|x-x_{0}\right\|\right) .
$$

The number A is called the "Fréchet Derivative" of f at x_{0}. We write $A=f^{\prime}(x)=$ $d f=D f=f_{x}$.

Note that the definition makes sense even if f is defined only in a neighborhood of x_{0} (it does not need to be defined on all of x).

It follows directly from the definition that if f is differentiable at x_{0}, then it is also continuous as x_{0}.

The function $f^{\prime}(x)$ is not a map from X to Y, it is a map from X to $\mathcal{B}(X, Y)$.
Example 1: Let f be a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Let f_{i} denote the component functions of f so that $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. If the partial derivatives

$$
f_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

all exist at some $x_{0} \in \mathbb{R}^{n}$, then f is differentiable at x_{0} and

$$
f^{\prime}\left(x_{0}\right)=\left[\begin{array}{llll}
f_{1,1}\left(x_{0}\right) & f_{1,2}\left(x_{0}\right) & \cdots & f_{1, n}\left(x_{0}\right) \\
f_{2,1}\left(x_{0}\right) & f_{2,2}\left(x_{0}\right) & \cdots & f_{2, n}\left(x_{0}\right) \\
\vdots & \vdots & & \vdots \\
f_{m, 1}\left(x_{0}\right) & f_{m, 2}\left(x_{0}\right) & \cdots & f_{m, n}\left(x_{0}\right)
\end{array}\right] .
$$

Example: Let (X, μ) be a measure space and consider the function

$$
f: L^{3}(X, \mu) \rightarrow L^{1}(X, \mu): \varphi \mapsto \varphi^{3} .
$$

In order to see if f is differentiable, we need to see if there exists an $A \in \mathcal{B}\left(L^{3}, L^{1}\right)$ such that

$$
\begin{equation*}
\lim _{\|\psi\|_{3} \rightarrow 0} \frac{\|f(\varphi+\psi)-f(\varphi)-A \psi\|_{1}}{\|\psi\|_{3}}=0 . \tag{2}
\end{equation*}
$$

We have

$$
f(\varphi+\psi)=\varphi^{3}+3 \varphi^{2} \psi+3 \varphi \psi^{2}+\psi^{3} .
$$

Therefore, if f is differentiable, we must have $A \psi=3 \varphi^{2} \psi$. That A is a bounded map is clear since (applying Hölder's inequality with $p=3, q=2 / 3$)

$$
\|A \psi\|_{1}=3 \int|\varphi|^{2}|\psi| \leq 3\left(\int|\psi|^{3}\right)^{1 / 3}\left(\int|\varphi|^{3}\right)^{2 / 3}=3\|\psi\|_{3}\|\varphi\|_{3}^{2}
$$

A similar calculation shows that

$$
\begin{aligned}
&\|f(\varphi+\psi)-f(\varphi)-A \psi\|_{1}=\left\|3 \varphi \psi^{2}+\psi^{3}\right\|_{1} \\
& \leq 3\left\|\varphi \psi^{2}\right\|_{1}+\left\|\psi^{3}\right\|_{1} \leq 3\|\varphi\|_{3}\|\psi\|_{3}^{2}+\|\psi\|_{3}^{3}
\end{aligned}
$$

It follows that (2) holds. Thus f is differentiable, and $f^{\prime}(\varphi): \psi \mapsto 3 \varphi^{2} \psi$.
Example: Set $I=[0,1]$ and consider the function

$$
f: C(I) \rightarrow \mathbb{R}: \varphi \mapsto \int_{0}^{1} \sin (\varphi(x)) d x
$$

The function f is differentiable at φ if there exists an $A \in \mathcal{B}(C(I), R)=C(I)^{*}$ such that

$$
\begin{equation*}
\lim _{\|\psi\| \|_{u} \rightarrow 0} \frac{|f(\varphi+\psi)-A \psi|}{\|\psi\|_{u}}=0 . \tag{3}
\end{equation*}
$$

We find that

$$
f(\varphi+\psi)=\int \sin (\varphi+\psi)=\int(\sin \varphi \cos \psi+\cos \varphi \sin \psi) .
$$

When $\|\psi\|_{\mathrm{u}}$ is small, $\psi(x)$ is small for every x, and so $\cos \psi=1+O\left(\psi^{2}\right)$, and $\sin \psi=\psi+O\left(\psi^{2}\right)$. An informal calculation then yields
$f(\varphi+\psi)=\int\left((\sin \varphi)\left(1+O\left(\psi^{2}\right)\right)+(\cos \varphi)\left(\psi+O\left(\psi^{2}\right)\right)\right)=f(\varphi)+\int((\cos \varphi) \psi)+O\left(\psi^{2}\right)$.

If f is differentiable, we must have

$$
A: \psi \mapsto \int_{0}^{1} \cos (\varphi(x)) \psi(x) d x
$$

It remains to prove that (3) holds. We have

$$
\begin{aligned}
f(\varphi+\psi)-f(\varphi)-A \psi & =\int_{0}^{1}(\sin (\varphi+\psi)-\sin (\varphi)-\cos (\varphi) \psi) d x \\
& =\int_{0}^{1}(\sin (\varphi)(\cos (\psi)-1)+\cos (\varphi)(\sin (\psi)-\psi)) d x
\end{aligned}
$$

Using that $|1-\cos t| \leq t^{2}$ and $|\sin t-t| \leq t^{2}$ for all $t \in \mathbb{R}$, we obtain

$$
|f(\varphi+\psi)-f(\varphi)-A \psi| \leq \int_{0}^{1}(|\sin \varphi(x)|+|\cos \varphi(x)|)|\psi(x)|^{2} d x \leq 2\|\psi\|_{\mathrm{u}}^{2} .
$$

Therefore (3) holds, and f is differentiable.
Example: Read Example 13.7 in the textbook.
Theorem 1 (Chain rule). Let X, Y, and Z denote Banach spaces. Suppose that the functions $f: X \rightarrow Y$, and $g: Y \rightarrow Z$ are differentiable. Then $g \circ f: X \rightarrow Z$ is differentiable, and

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x) .
$$

Note that all properties of the functions in Theorem 1 are local, so it would have been sufficient to assume only that f is differentiable in some neighborhood of x, and g is differentiable in some neighborhood of $f(x)$.

The notion of differentiation defined in Def. 1 is the direct generalization of the "Jacobian matrix" of multivariate analysis. We can also define a generalization of the concept of a directional derivative:

Definition 2. Let X and Y be Banach spaces and let f denote a function from X to Y. Letting x and u denote elements of X, we define the directional derivative of f at x, in the direction u, by

$$
\left(D_{u} f\right)(x)=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t} .
$$

Note that $\left(D_{u} f\right)(x)$ is simply an element of Y.
Remark 1. In the environment of Banach spaces, the directional derivative is frequently called a "Gâteaux derivative". Sometimes, this term is used to denote the vector $\left(D_{u} f\right)(x)$, but the text book uses a different terminology. To avoid confusion, we will avoid the term "Gâteaux derivative".

Example: Let f be as in Example 1, and let $u \in \mathbb{R}^{m}$. Then

$$
\left(D_{u} f\right)(x)=\left[\begin{array}{c}
u \cdot \nabla f_{1}(x) \\
u \cdot \nabla f_{2}(x) \\
\vdots \\
u \cdot \nabla f_{n}(x)
\end{array}\right] .
$$

Note that if X and Y are Banach spaces, and f is a differentiable function from X to Y, then

$$
f(x+t u)=f(x)+f^{\prime}(x)(t u)+o(\|t u\|) .
$$

Consequently,

$$
\left(D_{u} f\right)(x)=f^{\prime}(x) u .
$$

In other words, every (Fréchet) differentiable functions has directional derivatives in all directions. The converse is not true. In fact, it is not even true in \mathbb{R}^{2} as the following example shows:

Example: Set $X=\mathbb{R}^{2}$ and $Y=\mathbb{R}$. Define $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}<x_{2}<2 x_{1}^{2}\right\}$ and set $f=\chi_{\Omega}$. Then $\left(D_{u} f\right)(0)$ exists for all $u \in \mathbb{R}^{2}$, but f is not even continuous at 0 .

3. Partial derivatives

Let X, Y, and Z be Banach spaces and let F be a map from $X \times Y$ to Z. Then F is differentiable at $(\hat{x}, \hat{y}) \in X \times Y$ if and only if there exist maps $A \in \mathcal{B}(X, Z)$ and $B \in \mathcal{B}(Y, Z)$ such that

$$
F(x, y)=F(\hat{x}, \hat{y})+A(x-\hat{x})+B(y-\hat{y})+o\left(\|x-\hat{x}\|_{X}+\|y-\hat{y}\|_{Y}\right) .
$$

We call the maps A and B the partial derivatives of F with respect to x and y,

$$
A=F_{x}(\hat{x}, \hat{y}), \quad B=F_{y}(\hat{x}, \hat{y}) .
$$

Note that A is simply the derivative of the map $x \mapsto F(x, \hat{y})$, and similarly B is the derivative of the map $y \mapsto F(\hat{x}, y)$.

4. Minimization of functionals

(View this section as a large example.)
The directional derivative can be used to derive necessary conditions for a stationary point of a function. As an example, set $I=[0,1], X=C_{0}^{1}(I)$, and let us consider the functional

$$
\begin{equation*}
I: X \rightarrow \mathbb{R}: u \mapsto \int_{0}^{1} L\left(x, u(x), u^{\prime}(x)\right) d x \tag{4}
\end{equation*}
$$

where $L=L(x, u, v)$ is a function that is continuously differentiable in each of its arguments. Suppose that $u \in X$ is a point where I is minimized. Then for any $\varphi \in X$,

$$
0=\frac{d}{d \varepsilon} I(u+\varepsilon \varphi)=\left[D_{\varphi} I\right](u) .
$$

In other words, if u is a minimizer, then the directional derivative $\left[D_{\varphi} I\right](u)$ must be zero for all $\varphi \in X$. For the particular functional I, we find that

$$
\left.\frac{d}{d \varepsilon} I(u+\varepsilon \varphi)\right|_{\varepsilon=0}=\int_{0}^{1}\left[L_{u}\left(x, u, u^{\prime}\right) \varphi+L_{v}\left(x, u, u^{\prime}\right) \varphi^{\prime}\right] d x .
$$

Performing a partial integration (using that $\varphi(0)=\varphi(1)=0$), we obtain

$$
\begin{equation*}
0=\int_{0}^{1}\left[L_{u}\left(x, u, u^{\prime}\right)-\frac{d}{d x} L_{v}\left(x, u, u^{\prime}\right)\right] \varphi(x) d x . \tag{5}
\end{equation*}
$$

For (5) to hold for every $\varphi \in C_{0}^{1}([0,1])$ we must have

$$
\begin{equation*}
L_{u}\left(x, u(x), u(x)^{\prime}\right)-\frac{d}{d x} L_{v}\left(x, u(x), u^{\prime}(x)\right)=0, \quad x \in[0,1] . \tag{6}
\end{equation*}
$$

That the (potentially non-linear) ODE (6) holds is a necessary condition that a minimizer u must satisfy. This equation is called the "Euler-Lagrange" equation. (The function L is called the "Lagrangian" of the functional I.)

Example: Read example 13.35 in the text book.
Example: Consider a particle with mass m moving in a potential field ϕ. At time t, its position in \mathbb{R}^{d} is $u(t)$. The Lagrangian is the difference in kinetic and potential energy,

$$
L(t, u, \dot{u})=\frac{1}{2} m|\dot{u}(t)|^{2}-\phi(u(t)) .
$$

In other words,

$$
L(t, u, v)=\frac{1}{2} m|v|^{2}-\phi(u) .
$$

The Euler-Lagrange equations then read

$$
-\phi^{\prime}(u)-m \ddot{u}=0,
$$

which we recognize as Newton's second law.
Example: Consider a pendulum of mass m and length L. Letting ϕ denote the angle between the vertical line, and the pendulum, we find that

$$
E_{\text {kinetic }}=\frac{1}{2} m(L \dot{\phi})^{2}, \quad E_{\text {potential }}=m g L(1-\cos \phi)
$$

where g is the gravitational constant. Thus

$$
L(\phi, \dot{\phi})=\frac{1}{2} m L^{2} \dot{\phi}^{2}-m g L(1-\cos \phi),
$$

and the Euler-Lagrange equations take the form, $c f$. (11),

$$
\ddot{\phi}+\frac{g}{L} \sin \phi=0 .
$$

5. The implicit function theorem in $\mathbb{R}^{n} \times \mathbb{R}$ (Review)

Let $F(x, y)$ be a function that maps $\mathbb{R}^{n} \times \mathbb{R}$ to \mathbb{R}. The implicit function theorem gives sufficient conditions for when a level set of F can be parameterized by a function $y=f(x)$.

Theorem 2 (Implicit function theorem). Consider a continuously differentiable function $F: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, where Ω is a open subset of \mathbb{R}^{n}. We write $F=F(x, y)$, for $x \in \Omega$, and $y \in \mathbb{R}$. Fix a point $(\hat{x}, \hat{y}) \in \Omega \times \mathbb{R}$. If $F_{y}(\hat{x}, \hat{y}) \neq 0$, then there exists an open set G such that $\hat{x} \in G \subseteq \Omega$, and a function $f: G \rightarrow \mathbb{R}$, such that $f(\hat{x})=\hat{y}$, and $F(x, f(x))=F(\hat{x}, \hat{y})$ for all $x \in G$. Moreover, for $j=1, \ldots, n$, and $x \in G$,

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}(x)=-\frac{1}{F_{y}(x, f(x))} \frac{\partial F}{\partial x_{j}}(x, f(x)) . \tag{7}
\end{equation*}
$$

We will not prove the theorem, but note that (7) follows trivially from the chain rule: A simple differentiation with respect to x_{j} yields:

$$
F(x, f(x))=\text { const }, \quad \Rightarrow \quad F_{j}(x, f(x))+f_{j}(x) F_{y}(x, f(x))=0,
$$

where the subscript j refers to partial differentiation with respect to x_{j}.
For the case $n=1$, the implicit function theorem yields the following results:
Theorem 3 (Inverse function theorem). Let g be a continuously differentiable function from $\Omega \subseteq \mathbb{R}$ to \mathbb{R}. Fix a $\hat{y} \in \Omega$. If $g^{\prime}(\hat{y}) \neq 0$, there exists a neighborhood H of \hat{y}, a neighborhood G of $g(\hat{y})$, and function f defined on G (the inverse of g), such that

$$
\begin{equation*}
g(f(x))=x, \quad \forall x \in G . \tag{8}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{g^{\prime}(f(x))}, \quad \forall x \in G \tag{9}
\end{equation*}
$$

Proof of Theorem 3: Let g be as in the theorem, and consider the map $F(x, y)=$ $x-g(y)$. Set $\hat{x}=g(\hat{y})$. Then $F_{y}(\hat{x}, \hat{y})=g^{\prime}(\hat{y}) \neq 0$. Theorem 2 asserts the existence of a function f such that $F(x, f(x))=\hat{x}-g(\hat{y})=0$ for all x in some neighborhood G of $\hat{x}=g(\hat{y})$. In other words, $0=x-g(f(x))$ for all $x \in G$, which is (8). To obtain (9), simply differentiate (8).

Example: Consider the function $F(x, y)=x-y^{2}$ and the level set $\Gamma=\{(x, y): F(x, y)=$ $0\}$. Then $F_{y}(x, y)=-2 y$ so $F_{y}(x, y) \neq 0$ as long as $y \neq 0$. In other words, the parabola $x=y^{2}$ can locally be parameterized as a function of x at every point $x>0$, but not at $x=0$. Similarly, the function $y=\sqrt{x}$ be be locally inverted for every $x>0$, but not in any neighborhood of 0 .

Example: Consider the function $F(x, y)=x^{2}-y^{2}$ and the level set $\Gamma=\{(x, y): F(x, y)=$ $0\}$. What happens at the origin?

Example: Consider the function $g(y)=y^{3}$. We have $g^{\prime}(0)=0$, so Theorem 3 cannot assure that g is locally invertible at $y=0$. It is, however, since $f(x)=$
$|x|^{1 / 3} \operatorname{sign}(x)$ is a well-defined global inverse. We see that while the conditions of Theorem 2 and 3 are sufficient, they are certainly not necessary.

Example: Consider the function $F\left(x_{1}, x_{2}, y\right)=x_{1}^{2}+x_{2}^{2}+y^{2}$ and the level set $A=\left\{\left(x_{1}, x_{2}, y\right): F\left(x_{1}, x_{2}, y\right)=1\right\}$, the unit sphere in \mathbb{R}^{3}. Fix a point ($\hat{x}_{1}, \hat{x}_{2}, \hat{y}$) such that $x_{1}^{2}+x_{2}^{2}<1$. Then $F_{y}\left(\hat{x}_{1}, \hat{x}_{2}, \hat{y}\right)=2 \hat{y} \neq 0$ so the implicit function theorem implies that A can be locally parameterized as a function $y=f\left(x_{1}, x_{2}\right)$ in some neighborhood of (\hat{x}_{1}, \hat{x}_{2}). The formula (7) says that

$$
\begin{equation*}
\left(f_{1}, f_{2}\right)=-\frac{1}{F_{y}}\left(F_{1}, F_{2}\right)=-\frac{1}{2 y}\left(2 x_{1}, 2 x_{2}\right) . \tag{10}
\end{equation*}
$$

Note that equation (10) enables the evaluation of $\nabla f\left(\hat{x}_{1}, \hat{x}_{2}\right)$ without explicitly constructing f.

6. General Implicit Function Theorem

Theorem 4 (Implicit Function Theorem). Let X, Y, and Z be Banach spaces and let Ω be an open subset of $X \times Y$. Let F be a continuously differentiable map from Ω to Z. If $(\hat{x}, \hat{y}) \in \Omega$ is a point such that $D_{y} F(\hat{x}, \hat{y})$ is a bounded, invertible, linear map from Y to Z, then there is an open neighborhood G of \hat{x}, and a unique function $f: G \rightarrow Y$ such that

$$
F(x, f(x))=F(\hat{x}, \hat{y}), \quad \forall x \in G .
$$

Moreover, f is continuously differentiable, and

$$
f^{\prime}(x)=-\left[F_{y}(x, f(x))\right]^{-1} F_{x}(x, f(x)) .
$$

By applying the Implicit Function Theorem to the function $F(x, y)=x-g(y)$, we immediately obtain the Inverse Function Theorem:
Theorem 5 (Inverse Function Theorem). Suppose that X and Y are Banach spaces, and that Ω is an open subset of Y. Let g be a continuously differentiable function from Ω to X. Fix $\hat{y} \in \Omega$. If $g^{\prime}(\hat{y})$ has a bounded inverse, then there exists a neighborhood G of $g(\hat{y})$, and a unique function f from G to Ω such that

$$
g(f(x))=x, \quad \forall x \in G .
$$

Moreover, g is continuously differentiable, and

$$
f^{\prime}(x)=\left[g^{\prime}(f(x))\right]^{-1}, \quad \forall x \in G .
$$

Example (13.21 from the text book): Consider the ODE

$$
\begin{equation*}
\ddot{u}+\sin u=h . \tag{11}
\end{equation*}
$$

We assume that h is a periodic function with period T, and seek a solution u that also has period T. We cast (11) as a functional equation by introducing the function spaces

$$
\begin{aligned}
X & =\left\{u \in C^{2}(\mathbb{R}): u(t)=u(t+T) \forall t \in \mathbb{R}\right\}, \\
Y & =\{u \in C(\mathbb{R}): u(t)=u(t+T) \forall t \in \mathbb{R}\},
\end{aligned}
$$

and the non-linear map

$$
f: X \rightarrow Y: u \mapsto \ddot{u}+\sin u
$$

Then (11) can be formulated as follows: Given $h \in Y$, determine $u \in X$ such that

$$
\begin{equation*}
f(u)=h \tag{12}
\end{equation*}
$$

For $h=0$, equation (12) clearly has the solution $u=0$. Moreover, f is continuously differentiable in some neighborhood of 0 since

$$
f(u+v)=\ddot{u}+\ddot{v}+\sin (u+v)=\underbrace{\ddot{u}+\sin u}_{=f(u)}+\underbrace{\ddot{v}+(\cos u) v}_{=\left(f^{\prime}(u)\right) v}+O\left(\|v\|_{Y}^{2}\right)
$$

The map $f^{\prime}(0) \in \mathcal{B}(X, Y)$ has a continuous inverse if and only if the equation

$$
\ddot{v}+v=h
$$

has a unique solution for every $h \in Y$. We know from basic ODE theory that this is true if and only if $T \neq 2 \pi n$ for any integer n. The inverse function theorem then states the following: For every T that is not an integer multiple of 2π, there exists an $\varepsilon>0$ such that (11) has a unique, C^{2}, T-periodic solution for every continuous, T-periodic function h such that $\|h\|_{\mathrm{u}}<\varepsilon$.

Example: Set $I=[0,1]$, and consider the map

$$
f: L^{2}(I) \rightarrow L^{1}(I): u \mapsto(1 / 2) u^{2}
$$

Then f is continuously differentiable, with

$$
f^{\prime}(u): L^{2}(I) \rightarrow L^{1}(I): \varphi \mapsto u \varphi
$$

Note that

$$
\left\|f^{\prime}(u) \varphi\right\|_{1}=\int|u \varphi| \leq\|u\|_{2}\|\varphi\|_{2}
$$

so $f^{\prime}(u)$ is continuous. Set $\hat{u}=1$, and $\hat{v}=f(\hat{u})=1$. Then

$$
f^{\prime}(\hat{u}): \varphi \mapsto \varphi
$$

which certainly appears to be invertible. However, the map f cannot be invertible in any neighborhood of \hat{u}. To see this, we note that for any $\varepsilon>0$, the functions

$$
u_{1}=2 \chi_{[0, \delta]}+\chi_{[\delta, 1]}, \quad \text { and } \quad u_{2}=-2 \chi_{[0, \delta]}+\chi_{[\delta, 1]}
$$

satisfy $\left\|u_{j}-\hat{u}\right\|_{2}<\varepsilon$ provided that $\delta<\varepsilon^{2} / 9$. Consequently, f cannot be injective on any neighborhood of \hat{u}. There is no contradiction to the inverse function theorem, however, since $f^{\prime}(x): X \rightarrow Y$, is not continuously invertible. There are several (essentially equivalent) ways to verify this. The easiest is to note that $f^{\prime}(x)$ is not onto, since $L^{2}(I)$ is a strict subset of $L^{1}(I)$ (example: $x^{-1 / 2} \in L^{1} \backslash L^{2}$). Alternatively, one could show that the map $\varphi \mapsto \varphi$ is not a continuous map from L^{1} to L^{2}. For instance, set $\varphi_{n}=n \chi_{[0,1 / n]}$. Then $\left\|\varphi_{n}\right\|_{1}=1$, but $\left\|\varphi_{n}\right\|_{2}=\sqrt{n} \rightarrow \infty$.

