Applied Analysis (APPM 5450): Final Exam

7.30am - 10.00am, May 9, 2006. Closed books.

Notes: No motivation is required for problems 1 and 2. For problems 3, 4, and 5, please motivate your answers clearly, but briefly. Statements given as theorems, lemmas, etc., in the class material may be used without justification. The use of results from homework problems without justification will result in a loss of points. Integral signs denote Lebesgue integrals unless otherwise stated (in this exam, as well as in your solutions).

Problem 1: No motivation required. Two points each.
(a) Let H be a Hilbert space and let $A \in \mathcal{B}(H)$. Define what it means for A to be an "orthogonal projection".
(b) Let H denote a Hilbert space, let A denote a compact self-adjoint operator on H, and let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ denote an orthonormal basis on H such that $A \varphi_{n}=$ $\lambda_{n} \varphi_{n}$ for some numbers λ_{n}. Which statements must be true?
(1) $\lim _{n \rightarrow \infty} \lambda_{n}=0$.
(2) If c is a non-zero real number, then the number of λ_{n} 's that equal c is finite. (And yes, "zero" is a finite number.)
(3) At least one λ_{n} must equal zero.
(c) Define convergence on the Schwartz space $\mathcal{S}(\mathbb{R})$.
(d) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}:\left(x_{1}, x_{2}\right) \mapsto x_{2}$. What is the Fourier transform (in the distributional sense) of f ? (Don't worry about constants.)
(e) Let \mathcal{F} denote the Fourier transform. Which statements are true?
(1) $\mathcal{F}\left[L^{1}(\mathbb{R})\right] \subseteq L^{1}(\mathbb{R})$
(2) $\mathcal{F}\left[L^{2}(\mathbb{R})\right]=L^{2}(\mathbb{R})$
(3) $\mathcal{F}\left[S^{*}(\mathbb{R})\right]=S^{*}(\mathbb{R})$
(f) State Fatou's lemma.
(g) Set $I=[0,1]$, fix a function $\psi \in C(I)$, and consider the map $f: C(I) \rightarrow$ $C(I)$ that is defined by

$$
f(\varphi): x \mapsto \psi(x) \int_{0}^{1} \sin (\varphi(y)) d y
$$

Calculate the (Fréchet) derivative of f. (Give a formula for the derivative, and specify explicitly what kind of object it is.)

Problem 2: Consider the operator A on the Hilbert space $H=L^{2}([-\pi, \pi])$ that is defined by

$$
[A u](x)=\alpha \int_{-\pi}^{\pi} \cos (2 x-2 y) u(y) d y
$$

where α is a given complex number. For the following questions, no motivation is required.
(a) Determine $\operatorname{ran}(A)$. (2p)
(b) Determine $\sigma(A)$ and classify each point in the spectrum as belonging to either $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, or $\sigma_{\mathrm{r}}(A)$. (2p)
(c) For what numbers α, if any, is A a self-adjoint operator? (1p)
(d) For what numbers α, if any, is A a unitary operator? (1p)
(e) For what numbers α, if any, is A a projection? (1p)

Problem 3: Let $\mathcal{S}(\mathbb{R})$ denote the set of Schwartz functions on the line. Consider the map

$$
T: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R}: \varphi \mapsto \lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x
$$

Prove that T is continuous. (5p)
Problem 4: Let f_{n} be a sequence of measurable functions from \mathbb{R} to \mathbb{R} such that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in \mathbb{R}$. Let g be a function in $L^{1}(\mathbb{R})$. Determine

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{f_{n}(x) g(x)}{1+\left(f_{n}(x)\right)^{4}} d x
$$

Justify your answer. (5p)
Problem 5: Let p be a real number such that $1 \leq p<\infty$, and $p \neq 2$. Prove that $L^{p}\left(\mathbb{R}^{d}\right)$ is not a Hilbert space. (In other words, prove that the norm on L^{p} cannot be generated by an inner product.) (4p)

