
APPM5440 — Applied Analysis: Section exam 1 — Solutions
10:00 – 10:50, Sep. 23, 2016. Closed books.

Each problem has a max of 8 points, for a total maximum score of 40 points.

Problem 1: Consider the set X = R3. Let p be a real number such that 0 < p <∞.

(a) For which values of p in the interval (0,∞) is the following function a metric on X = R3:

d(x, y) =
(
|x1 − y1|p + |x2 − y2|p + |x3 − y3|p

)1/p
.

(b) For which values of p in the interval (0,∞) is the following function a metric on X = R3:

d(x, y) =
(
|x1 − y1|p + |x2 − y2|p

)1/p
+ |x3 − y3|.

(c) For which values of p in the interval (0,∞) is the following function a metric on X = R3:

d(x, y) = |x1 − y1|p + |x2 − y2|+ |x3 − y3|.

No motivation is necessary, just write down your answer to each part. Observe carefully that the
question is about metrics, not norms.

Solution:

(a) p ∈ [1,∞) This is just the standard `p norm on R3. When p < 1, the triangle inequality does

not hold.

(b) p ∈ [1,∞) This is a mixture of the `1 and `p norms. If p < 1, then the triangle inequality

does not hold in the x1-x2-plane. If p ≥ 1, then observe that if (X1, ‖ · ‖1) and (X2, ‖ · ‖2) are
two NLS, then X1 ×X2 is a NLS with the norm ‖(x1, x2)‖ = ‖x1‖1 + ‖x2‖2.

(c) p ∈ (0, 1] See the proof of Exercise 1.5. We showed if (X, ‖ · ‖) is a NLS, and if f : [0,∞)→
[0,∞) is a function such that f(0) = 0, f ′ ≥ 0, and f ′ is non-increasing, then d(x, y) =
f(‖x − y‖) is a metric on X. With f(t) = tp, we see that the conditions hold if p ∈ (0, 1]. If
p > 1, then the triangle inequality is violated on the x1-axis.



Problem 2: Let (X, d) be a metric space, and let Ω be a subset of X.

(a) Define what it means for Ω to be totally bounded.
(b) Suppose that X itself is totally bounded. Does X necessarily have a countable dense subset?

If you answer yes, then prove this. If you answer no, then provide a counter example.

Solution:

For (a) see the textbook. The answer to (b) is yes, and the proof is a subset of the proof that any
compact set has a dense countable subset. Observe that we do not need X to be complete for this
proof to work.

Max of 2p for (a), and 6p for (b).



Problem 3: In this problem, let (X, d) denote a metric space.

(a) Let Ω be a subset of X. State the definition of the closure of Ω.
(b) Consider the set of rational numbers X = Q equipped with the standard metric (the absolute

value function). Set Ω = {x ∈ X : x2 < 2}. What is the closure of Ω?
(c) State the definition of a completion of (X, d).
(d) Consider the set X of positive rational numbers. What is the completion of X? (The comple-

tion is not unique, of course, but there is one very natural candidate.)

Solution:

For (b), the answer is that Ω = Ω. Recall that in one of the homeworks, we proved that in X, the
set Ω is closed, so it is its own closure. Recall that when we talk about closure of a set (as opposed
to “completion”) then we only work with points already in the set. So in this particular example, we
cannot add non-rational numbers to the closure.

For (d), one natural completion is the interval I = [0,∞) of real numbers. Observe that∞ should not
be included in the completion since there is no Cauchy sequence in X that converges to ∞. (Every
Cauchy sequence is bounded.)

Max of 2p for each sub-question.



Problem 4: Set X = `2. In other words, an element x ∈ X if it is a sequence of real numbers

x = (x1, x2, x3, . . . ) such that
∑∞

n=1 |xn|2 < ∞. The norm on X is ‖x‖ =
(∑∞

n=1 |xn|2
)1/2

. Let B
denote the unit ball, so that B = {x ∈ X : ‖x‖ ≤ 1}. Prove that B is not a compact set.

Solution:

Let {e(n)}∞n=1 denote the canonical basis vectors, so that

e(1) =(1, 0, 0, 0, . . . ),

e(2) =(0, 1, 0, 0, . . . ),

e(3) =(0, 0, 1, 0, . . . ),

Then you can easily verify that e(n) ∈ B for every n, and that if m 6= n, then ‖e(n)−e(m)‖ =
√

2, which

shows that (e(n)) cannot have a convergent subsequence. Alternative, you could use these observations

to prove that if ε < 1/
√

2, then there cannot exist a finite ε-cover of B since at most one e(n) can be
inside any such ε-ball.



Problem 5: Set I = [0, 1] and let X denote the set of real-valued piecewise continuous functions f
on I such that ∫ 1

0
|f(x)|2 dx <∞.

(Since f is piecewise continuous, this is a plain Riemann integral.) Define the function n on X via

n(f) =

∫ 1

0
|f(x)| dx.

(a) Prove that the function n is a seminorm on X.
(b) Construct a sequence of functions (fn)∞n=1 in X that is Cauchy with respect to n, and that

converges pointwise to a function on I that does not belong to X.

Solution:

For (b), you could use, for instance, the functions

fn(x) =

{
0, x ∈ [0, 1/n),

x−1/2, x ∈ [1/n, 1].

We have
∫ 1
0 |fn|

2 =
∫ 1
1/n x

−1 dx = log(n) <∞ so fn ∈ X. Moreover, for m ≤ n, we have

‖fn − fm‖ =

∫ 1

0
|fn(x)− fm(x)| dx =

∫ 1/m

1/n
x−1/2 dx = [2x1/2]

1/m
1/n = 2m−1/2 − 2n−1/2.

We see that if m,n ≥ N , then ‖fn − fm‖ ≤ 2N−1/2 so (fn) is indeed Cauchy. The pointwise limit of
(fn) is the function

f(x) =

{
0, x = 0,

x−1/2, x ∈ (0, 1].

But ∫ 1

0
|f(x)|2 dx =

∫ 1

0
x−1 dx =∞,

so f /∈ X.

Max of 2p for (a), and 6p for (b).


