APPM5440 — Applied Analysis: Section exam 1 — Solutions
10:00 — 10:50, Sep. 23, 2016. Closed books.

FEach problem has a max of 8 points, for a total maximum score of 40 points.

Problem 1: Consider the set X = R3. Let p be a real number such that 0 < p < oco.

(a) For which values of p in the interval (0,00) is the following function a metric on X = R3:
1
d(x,y) = (|11 — 1 + |wa — ol + o5 — ys]?) /7.
(b) For which values of p in the interval (0, o) is the following function a metric on X = R3:
1
dla,y) = (jn =l + ez = al?) 77 + fos — g3,
(c) For which values of p in the interval (0, 00) is the following function a metric on X = R3:
d(z,y) = |21 =y + w2 — 2l + |23 — ysl.

No motivation is necessary, just write down your answer to each part. Observe carefully that the
question is about metrics, not norms.

Solution:

(a) |p € [1,00) | This is just the standard ¢” norm on R3. When p < 1, the triangle inequality does
not hold.

(b) |p € [1,00) | This is a mixture of the ¢! and ¢” norms. If p < 1, then the triangle inequality

does not hold in the z1-z2-plane. If p > 1, then observe that if (X1, |- ||1) and (Xa,|| - ||2) are
two NLS, then X; x X is a NLS with the norm ||(z1, z2)| = ||z1]|l1 + [|z2]|2-

(c) |p € (0,1]| See the proof of Exercise 1.5. We showed if (X, || -||) is a NLS, and if f: [0,00) —
[0,00) is a function such that f(0) = 0, f/ > 0, and f’ is non-increasing, then d(z,y) =
f(lz —yl|) is a metric on X. With f(t) = tP, we see that the conditions hold if p € (0, 1]. If
p > 1, then the triangle inequality is violated on the xj-axis.



Problem 2: Let (X, d) be a metric space, and let 2 be a subset of X.

(a) Define what it means for €2 to be totally bounded.
(b) Suppose that X itself is totally bounded. Does X necessarily have a countable dense subset?
If you answer yes, then prove this. If you answer no, then provide a counter example.

Solution:

For (a) see the textbook. The answer to (b) is yes, and the proof is a subset of the proof that any
compact set has a dense countable subset. Observe that we do not need X to be complete for this
proof to work.

Mazx of 2p for (a), and 6p for (b).



Problem 3: In this problem, let (X, d) denote a metric space.

(a) Let 2 be a subset of X. State the definition of the closure of €.

(b) Consider the set of rational numbers X = Q equipped with the standard metric (the absolute
value function). Set Q = {z € X : 2% < 2}. What is the closure of Q?

(c) State the definition of a completion of (X, d).

(d) Consider the set X of positive rational numbers. What is the completion of X? (The comple-
tion is not unique, of course, but there is one very natural candidate.)

Solution:

For (b), the answer is that Q = Q. Recall that in one of the homeworks, we proved that in X, the
set Q is closed, so it is its own closure. Recall that when we talk about closure of a set (as opposed
to “completion”) then we only work with points already in the set. So in this particular example, we
cannot add non-rational numbers to the closure.

For (d), one natural completion is the interval I = [0, c0) of real numbers. Observe that co should not
be included in the completion since there is no Cauchy sequence in X that converges to oco. (Every
Cauchy sequence is bounded.)

Max of 2p for each sub-question.



Problem 4: Set X = (2. In other words, an element z € X if it is a sequence of real numbers
x = (w1, 2, o3, ...) such that >0 | |zx]* < co. The norm on X is [z|| = (302, |xn|2)1/2. Let B
denote the unit ball, so that B = {z € X : ||z|| < 1}. Prove that B is not a compact set.

Solution:

Let {e(™}° | denote the canonical basis vectors, so that
e =(1,0,0,0,...),
e =(0,1,0,0,...),
e® =(0,0,1,0,...),

Then you can easily verify that e(™ € B for every n, and that if m # n, then ||e(™ —e(™)|| = /2, which
shows that (e(™) cannot have a convergent subsequence. Alternative, you could use these observations
to prove that if e < 1/ V/2, then there cannot exist a finite e-cover of B since at most one e(™ can be
inside any such e-ball.



Problem 5: Set I = [0,1] and let X denote the set of real-valued piecewise continuous functions f
on [ such that

1
/ |f(z)? dx < .
0

(Since f is piecewise continuous, this is a plain Riemann integral.) Define the function n on X via

1
n(f) = /O f ()] d.

(a) Prove that the function n is a seminorm on X.
(b) Construct a sequence of functions (f,)2°; in X that is Cauchy with respect to n, and that
converges pointwise to a function on I that does not belong to X.

Solution:

For (b), you could use, for instance, the functions

0, x €[0,1/n),
fn(aj) = { x*1/27 S [l/nv 1]

We have fol |fn]? = fll/n r~tdx = log(n) < 0o so f, € X. Moreover, for m < n, we have

1 1/m
= Fll = [ 1£ufo) = fn(a) o = /m eV e = [ =22 a2,

We see that if m,n > N, then ||f, — fm| < 2N"Y2 so (f,) is indeed Cauchy. The pointwise limit of

(fn) is the function
07 xr = 0,
f(x) = { z12 2 e (0,1].

/Ol\f(x)\de—/ol:):_ldw—oo,
so f ¢ X.

Maz of 2p for (a), and 6p for (b).

But



