Hints for homework set 12 — APPM5440 — Fall 2016

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on I = [0, 1]. For $f \in X$, set $||f|| = \sup_{x \in I} |f(x)|$. For $f \in X$, define

$$\varphi_1(f) = \int_0^1 f(x) \, dx, \quad \varphi_2(f) = f(0), \quad \varphi_3(f) = f'(1/2), \quad \varphi_4(f) = f'(1/3)$$

Prove that $\varphi_j \in X^*$ for j = 1, 2, 3, 4. Prove that $\{\varphi_1, \varphi_2, \varphi_3\}$ forms a basis for X^* . Prove that $\{\varphi_1, \varphi_2, \varphi_4\}$ does not form a basis for X^* .

- Solution: -

You can easily prove that all the φ_j 's are linear.

To prove that each φ_j is continuous, simply invoke the theorem that any linear map on a finite dimensional space is continuous. For fun, let's work it out explicitly for j = 1, 2:

$$\begin{aligned} |\varphi_1(f)| &\leq \int_0^1 |f(x)| \, dx \leq \int_0^1 ||f|| \, dx = ||f||.\\ |\varphi_2(f)| &= |f(0)| \leq ||f||. \end{aligned}$$

Proving directly that φ_3 and φ_4 are bounded takes a little more work.

To prove that $\{\varphi_1, \varphi_2, \varphi_3\}$ forms a basis, we first observe that since X has dimension three, we know that X^* also has dimension three. So all we need to prove is that the set is linearly independent. Suppose

$$c_1 \varphi_1 + c_2 \varphi_2 + c_3 \varphi_3 = 0.$$

In other words, for every $f \in X$, we must have $c_1 \varphi_1(f) + c_2 \varphi_2(f) + c_3 \varphi_3(f) = 0$. By plugging in $f = 1, f = x, f = x^2$, we get three equations for c_1, c_2 , and c_3 ,

$$f = 1 \quad \Rightarrow \quad c_1 + c_2 = 0,$$

$$f = x \quad \Rightarrow \quad (1/2)c_1 + c_3 = 0$$

$$f = x^2 \quad \Rightarrow \quad (1/3)c_1 + c_3 = 0$$

It is easy to show that the only solution is $c_1 = c_2 = c_3 = 0$.

To prove that $\{\varphi_1, \varphi_2, \varphi_4\}$ does not form a basis, we will prove that they are linearly dependent. Suppose

$$c_1 \varphi_1 + c_2 \varphi_2 + c_4 \varphi_4 = 0.$$

By plugging in f = 1, f = x, $f = x^2$, we get three equations for c_1 , c_2 , and c_4 ,

$$f = 1 \implies c_1 + c_2 = 0,$$

 $f = x \implies (1/2)c_1 + c_4 = 0,$
 $f = x^2 \implies (1/3)c_1 + (2/3)c_4 = 0$

This system has infinitely many solutions. For any $t \in \mathbb{R}$, the triple $\{c_1 = t, c_2 = -t, c_4 = -t/2\}$ is a solution. In particular, for t = 1 we find that

$$\varphi_1 - \varphi_2 - \frac{1}{2}\varphi_4 = 0.$$

 $\mathbf{2}$

Problem 2: Let $X = \ell^2$. Recall from class that every $\varphi \in X^*$ is of the form $\varphi(x) = \sum x_n y_n$ for some $y \in X$. Set $D = \{x \in \ell^2 : ||x|| = 1\}$. Prove that the weak closure of D is the closed unit ball in ℓ^2 . (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that ||x|| < 1 explicitly construct a sequence $(x^{(n)})_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $||x^{(n)}|| = 1$.)

Set $Y = \ell^3$. What is Y^* ? Prove that the weak closure of the surface of the unit ball in ℓ^3 is the closed unit ball in ℓ^3 .

- Solution: -

Fix $x \in X$ such that ||x|| < 1. For $n = 1, 2, 3, \ldots$, define α_n via

$$\alpha_n = \sqrt{1 - \sum_{j \neq n} x_j^2}.$$

Since ||x|| < 1, we know that $0 < \alpha_n \leq 1$ for every *n*. Then define $x^{(n)}$ as the sequence obtained by swapping x_n for α_n . In other words

$$x^{(n)} = (x_1, x_2, \dots, x_{n-2}, x_{n-1}, \alpha_n, x_{n+1}, x_{n+2}, \dots).$$

We find that

$$||x^{(n)}||^2 = \alpha_n^2 + \sum_{j \neq n} x_j^2 = 1$$

so $x^{(n)} \in D$ for every n.

It remains to show that $x^{(n)} \rightarrow x$. Fix $y \in X$. Then

 $(x - x_n, y) = (x_n - \alpha_n) y_n.$ Since $||y_n|| \to 0$ and $|x_n - \alpha_n| \le |x_n| + |\alpha_n| \le 2$, we find that $\lim_{n \to \infty} (x - x_n, y) = 0.$

In treating the set Y, we first recall that the dual of ℓ^p for $p \in (1, \infty)$ is the set ℓ^q where 1/p+1/q = 1. When p = 3, we find q = 3/2. In other words, any $\varphi \in Y^3$ takes the form

$$\varphi(x) = \sum_{n=1}^{\infty} x_n \, y_n,$$

where $y \in \ell^{3/2}$. The density argument now follows pretty much the same lines as it did for $X = \ell^2$. Given x such that ||x|| < 1, pick α_n so that

$$\alpha_n = \left(1 - \sum_{j \neq n} |x_j|^3\right)^{1/3},$$

 set

$$x^{(n)} = (x_1, x_2, \dots, x_{n-2}, x_{n-1}, \alpha_n, x_{n+1}, x_{n+2}, \dots)$$

show that $||x^{(n)}|| = 1$, and then that $x^{(n)} \rightharpoonup x$.

Problem 3: Consider the space $X = \ell^2$ and let $T \in \mathcal{B}(X)$ be a compact operator such that $\ker(T) = \{0\}$. Prove that $\operatorname{ran}(T)$ is not closed.

- Solution: -

We prove this by contradiction. Suppose that $ker(T) = \{0\}$ and that ran(T) is closed. We know from the closed range theorem that then there exists a positive c such that

 $||Tx|| \ge c||x||, \qquad \forall x \in X.$

Let $(e_n)_{n=1}^{\infty}$ be the canonical basis vectors

$$e_1 = (1, 0, 0, 0, \dots)$$

$$e_2 = (0, 1, 0, 0, \dots)$$

$$e_3 = (0, 0, 1, 0, \dots)$$

:

Observe that if $m \neq n$, then $||e_m - e_n|| = \sqrt{2}$. It now follows that $(Te_n)_{n=1}^{\infty}$ cannot have a convergent subsequence since, for $m \neq n$, we have $||Te_m - Te_n|| \ge c\sqrt{2}$. It follows that T cannot be compact.