Hints for homework set 12 - APPM5440 — Fall 2016

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on $I=[0,1]$. For $f \in X$, set $\|f\|=\sup _{x \in I}|f(x)|$. For $f \in X$, define

$$
\varphi_{1}(f)=\int_{0}^{1} f(x) d x, \quad \varphi_{2}(f)=f(0), \quad \varphi_{3}(f)=f^{\prime}(1 / 2), \quad \varphi_{4}(f)=f^{\prime}(1 / 3)
$$

Prove that $\varphi_{j} \in X^{*}$ for $j=1,2,3,4$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis for X^{*}. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis for X^{*}.

Solution:

You can easily prove that all the φ_{j} 's are linear.

To prove that each φ_{j} is continuous, simply invoke the theorem that any linear map on a finite dimensional space is continuous. For fun, let's work it out explicitly for $j=1,2$:

$$
\begin{gathered}
\left|\varphi_{1}(f)\right| \leq \int_{0}^{1}|f(x)| d x \leq \int_{0}^{1}\|f\| d x=\|f\| . \\
\left|\varphi_{2}(f)\right|=|f(0)| \leq\|f\| .
\end{gathered}
$$

Proving directly that φ_{3} and φ_{4} are bounded takes a little more work.

To prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis, we first observe that since X has dimension three, we know that X^{*} also has dimension three. So all we need to prove is that the set is linearly independent. Suppose

$$
c_{1} \varphi_{1}+c_{2} \varphi_{2}+c_{3} \varphi_{3}=0
$$

In other words, for every $f \in X$, we must have $c_{1} \varphi_{1}(f)+c_{2} \varphi_{2}(f)+c_{3} \varphi_{3}(f)=0$. By plugging in $f=1, f=x, f=x^{2}$, we get three equations for c_{1}, c_{2}, and c_{3},

$$
\begin{aligned}
f=1 & \Rightarrow c_{1}+c_{2}=0, \\
f=x & \Rightarrow(1 / 2) c_{1}+c_{3}=0, \\
f=x^{2} & \Rightarrow(1 / 3) c_{1}+c_{3}=0 .
\end{aligned}
$$

It is easy to show that the only solution is $c_{1}=c_{2}=c_{3}=0$.

To prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis, we will prove that they are linearly dependent. Suppose

$$
c_{1} \varphi_{1}+c_{2} \varphi_{2}+c_{4} \varphi_{4}=0
$$

By plugging in $f=1, f=x, f=x^{2}$, we get three equations for c_{1}, c_{2}, and c_{4},

$$
\begin{aligned}
f=1 & \Rightarrow c_{1}+c_{2}=0 \\
f=x & \Rightarrow(1 / 2) c_{1}+c_{4}=0, \\
f=x^{2} & \Rightarrow(1 / 3) c_{1}+(2 / 3) c_{4}=0 .
\end{aligned}
$$

This system has infinitely many solutions. For any $t \in \mathbb{R}$, the triple $\left\{c_{1}=t, c_{2}=-t, c_{4}=-t / 2\right\}$ is a solution. In particular, for $t=1$ we find that

$$
\varphi_{1}-\varphi_{2}-\frac{1}{2} \varphi_{4}=0
$$

Problem 2: Let $X=\ell^{2}$. Recall from class that every $\varphi \in X^{*}$ is of the form $\varphi(x)=\sum x_{n} y_{n}$ for some $y \in X$. Set $D=\left\{x \in \ell^{2}:\|x\|=1\right\}$. Prove that the weak closure of D is the closed unit ball in ℓ^{2}. (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that $\|x\|<1$ explicitly construct a sequence $\left(x^{(n)}\right)_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $\left\|x^{(n)}\right\|=1$.)

Set $Y=\ell^{3}$. What is Y^{*} ? Prove that the weak closure of the surface of the unit ball in ℓ^{3} is the closed unit ball in ℓ^{3}.

Solution:

Fix $x \in X$ such that $\|x\|<1$. For $n=1,2,3, \ldots$, define α_{n} via

$$
\alpha_{n}=\sqrt{1-\sum_{j \neq n} x_{j}^{2}}
$$

Since $\|x\|<1$, we know that $0<\alpha_{n} \leq 1$ for every n. Then define $x^{(n)}$ as the sequence obtained by swapping x_{n} for α_{n}. In other words

$$
x^{(n)}=\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}, \alpha_{n}, x_{n+1}, x_{n+2}, \ldots\right) .
$$

We find that

$$
\left\|x^{(n)}\right\|^{2}=\alpha_{n}^{2}+\sum_{j \neq n} x_{j}^{2}=1
$$

so $x^{(n)} \in D$ for every n.
It remains to show that $x^{(n)} \rightharpoonup x$. Fix $y \in X$. Then

$$
\left(x-x_{n}, y\right)=\left(x_{n}-\alpha_{n}\right) y_{n} .
$$

Since $\left\|y_{n}\right\| \rightarrow 0$ and $\left|x_{n}-\alpha_{n}\right| \leq\left|x_{n}\right|+\left|\alpha_{n}\right| \leq 2$, we find that

$$
\lim _{n \rightarrow \infty}\left(x-x_{n}, y\right)=0
$$

In treating the set Y, we first recall that the dual of ℓ^{p} for $p \in(1, \infty)$ is the set ℓ^{q} where $1 / p+1 / q=$ 1 . When $p=3$, we find $q=3 / 2$. In other words, any $\varphi \in Y^{3}$ takes the form

$$
\varphi(x)=\sum_{n=1}^{\infty} x_{n} y_{n}
$$

where $y \in \ell^{3 / 2}$. The density argument now follows pretty much the same lines as it did for $X=\ell^{2}$. Given x such that $\|x\|<1$, pick α_{n} so that

$$
\alpha_{n}=\left(1-\sum_{j \neq n}\left|x_{j}\right|^{3}\right)^{1 / 3}
$$

set

$$
x^{(n)}=\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}, \alpha_{n}, x_{n+1}, x_{n+2}, \ldots\right),
$$

show that $\left\|x^{(n)}\right\|=1$, and then that $x^{(n)} \rightharpoonup x$.

Problem 3: Consider the space $X=\ell^{2}$ and let $T \in \mathcal{B}(X)$ be a compact operator such that $\operatorname{ker}(T)=\{0\}$. Prove that $\operatorname{ran}(T)$ is not closed.

Solution:

We prove this by contradiction. Suppose that $\operatorname{ker}(T)=\{0\}$ and that $\operatorname{ran}(T)$ is closed. We know from the closed range theorem that then there exists a positive c such that

$$
\|T x\| \geq c\|x\|, \quad \forall x \in X
$$

Let $\left(e_{n}\right)_{n=1}^{\infty}$ be the canonical basis vectors

$$
\begin{aligned}
e_{1} & =(1,0,0,0, \ldots) \\
e_{2} & =(0,1,0,0, \ldots) \\
e_{3} & =(0,0,1,0, \ldots) \\
& \vdots
\end{aligned}
$$

Observe that if $m \neq n$, then $\left\|e_{m}-e_{n}\right\|=\sqrt{2}$. It now follows that $\left(T e_{n}\right)_{n=1}^{\infty}$ cannot have a convergent subsequence since, for $m \neq n$, we have $\left\|T e_{m}-T e_{n}\right\| \geq c \sqrt{2}$. It follows that T cannot be compact.

