Homework set 3 — APPM5440, Fall 2016

From the textbook: 1.17, 1.18, 1.20, 1.22, 1.27.

Solution for 1.20: Show that an NLS X is complete iff it is the case that every absolutely
convergent sum converges.

Assume that X is complete: ‘ Let (z,) be a sequence such that Y o7, [|z,|| < co. Set

m
Sm = E L.
n=1

We need to show that (s,,) converges in X. We will do this by showing that (s,,) is Cauchy, and
then the completeness of X will imply convergence. Fix € > 0. Then pick an N such that

o0
> ]l <e.
n=N+1
Now suppose N < m < k. Then
k k
llsm —sell =11 D wall < D [laall <e
n=m-+1 n=m-+1

Assume that every absolutely convergent sum converges: ‘ Let (ym) be a Cauchy sequence in X.

Pick a subsequence (ym,) such that ||ym; — Ym, .|| < 277. Set
1 = Ymy
and then set for n = 2,3,4, ...

In = ymn - ymn—l'

[e.e] o0 1
> lanall < flal] +227 < 00,
n=1 n=2

Observe that

Next note that

J
Ym; = Z Tnp-
n=1

By assumption, we then know that y,,,; converges to some limit point y € X. All that remains is
to show that (y,,) also converges to y. Fix ¢ > 0. Pick N such that

m,k >N = lym — yi|| < e/2.
Then pick m; such that ||y — y,|| < /2 and m; > N. Then

m=2N = |y =yl <y = vl + lym; —ymll <€/2+e/2=¢.

Solution for 1.27: Suppose x, does not converge to x. Then there exists an € > 0 and a
subsequence such that d(z,,,z) > . Since the space is compact, (7,,) has a convergent subse-
quence. But then by assumption, this subsequence must converge to z, which is impossible since
d(wn;, ) > ¢ for all j.
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Problem 1: We define a subset €2 of R via

Q={0}U ([j [ﬁ/z ;])

n=1

Prove that 2 is compact.

Qutline of solution: ) is totally bounded since any bounded subset of R is. That {2 is complete
follows from the fact that R is complete, if we can only prove that € is closed. An easy way to do
this is to write €2° as an infinite union of open sets.

Problem 2: Consider our recurring example of the metric space Q (with the standard metric),
and its subset 2 = {g € Q: ¢% < 2}.

(a) Prove the  is both open and closed in Q.

(b) € is bounded. Does the claim in (a) imply that € is compact? If yes, then motivate, if not,
then decide whether € is in fact compact.

Outline of solution: For (a), simply use the definition. To prove that € is open, pick a point
q € §2, and then construct an ¢ ball around it entirely contained in 2. Then prove that ¢ is open
analogously. For (b), note that (a) does not imply that €2 is compact since the underlying space,
Q is not complete. In fact, Q is not compact. An easy way to prove this is to prove that  is to
construct a sequence in €2 that does not have a convergent subsequence.

Problem 3: Let X be an infinite set equipped with the discrete metric. Decide which subsets of
X (if any) are compact.

Solution: A set 2 in (X, d) is compact iff it is finite. Suppose that (2 is finite, @ = {z;}7_;. Then
Q is closed (any set is) and it is also totally bounded since for any e, the sets {B:(x;)}}_; cover
Q. Conversely, suppose that €2 is infinite. Then {B)5(7)}zcq = {{z}}zeq is an open cover of
without any finite subcover.

Problem 4: Consider the metric space R with the usual metric.
(a) Construct an open cover of £ = (0, 1] that does not have a finite subcover.
(b) Construct an open cover of Q9 = [0, 00) that does not have a finite subcover.

(c) Construct a real-valued continuous function f on §2; that is not uniformly continuous. Demon-
strate that for your choice of f, there exists an € > 0 such that for any 6 > 0, there are numbers
TnyYn € Qp such that d(x,,yn) < 1/n and d(f(xn,yn)) > €. Is it possible to construct such a
function that is bounded? (Note: this problem was corrected by inserting a requirement that f be
continuous.)

Solution:



(2) 2 C [J @/ (n+1), 1/(n—1/2)).

n=1

(b) 2 C | J(n—2,n).

n=1
(c) Unbounded example: f(z) =1/z, e =0.25, x, = 1/n, y, = 1.5/n.

Bounded example: f(z) = cos(1l/z), e =1, z, = 1/(72n), y, = 1/(7(2n + 1)).



