
Applied Analysis (APPM 5440): Final exam
7:30pm – 10:00pm, Dec. 11, 2016. Closed books.

Problem 1: (16p) No motivations required for these problems. 4p each.

(a) Let X be a set, and let T denote a topology on X. Define what it means for T to satisfy
the Hausdorff property.

See textbook.

(b) Let X denote a Banach space. Mark the following statements as true/false:
TRUE FALSE

If (Tn)∞n=1 is a sequence in B(X) of compact operators that converges in
norm to an operator T , then T is necessarily compact.

TRUE

Let S, T ∈ B(X). If S is compact, then ST is compact. TRUE
Let S, T ∈ B(X). If S is compact, then TS is compact. TRUE
Let S, T ∈ B(X). If S and T are both compact, then S + T is compact. TRUE
Let S, T ∈ B(X). If S is compact, then S + T is compact. FALSE

(c) Set I = [0, 1] and X = C(I). (We use the standard norm on X.) Define the subset

A = {u ∈ X : u is continuously differentiable and ‖u′‖ ≤ 1}.
Describe the closure Ā of A:

The set Lipschitz continuous functions f such that Lip(f) ≤ 1.

Is Ā a compact set (yes/no)? No. (The set is not bounded.)

(d) Set H = L2([−1, 1]), and define T ∈ B(H) via [Tu](x) = 2u(−x). Let S ∈ B(H) be an
operator for which you know that ‖S‖ ≤ c, where c is some positive number. Are there
any values of c for which you can say for sure that the operator T − S has closed range?

c < 2 (Observe that T is invertible, so T − S = T (I − T−1S). If ‖T−1S‖ < 1, then the
Neumann formula tells us that T − S is invertible as well, which implies that its range is
all of H, which is closed. Since ‖T−1‖ = 1/2, we see that ‖T−1S‖ < 1 if ‖S‖ < 2.



Problem 2: (16p) Let H denote a Hilbert space. Prove that for every element ϕ ∈ H∗, there
exists a unique y ∈ H such that

ϕ(x) = (y, x), ∀x ∈ H.

Solution:

See the course notes for a clean an short proof that works in any Hilbert speace.

Many solutions attempted to use the fact that every HS has an ON basis to build the vector y.
This can be done, but is more work, and uses more machinery than is necessary. For completeness,
let us see how a correct argument along these lines would work.

First observe that if H is finite dimensional, then things are straight-forward. Let {ei}ni=1 denote
an ON basis. Then any vector x ∈ H admits an expansion x =

∑n
i=1 xiei, so

ϕ(x) = ϕ

(
n∑
i=1

xiei

)
=

n∑
i=1

xiϕ(ei).

Now define

y =
n∑
i=1

ϕ(ei) ei

(observe the complex conjugate!) to see that

ϕ(x) =
n∑
i=1

ϕ(ei)xi =
n∑
i=1

(ei, y) (ei, x) = (y, x).

Next let us consider the general case whereH has a basis {eα}α∈A. Superficially, the same argument
can be applied here, but you have to prove that

∑
α∈A |ϕ(eα)|2 < ∞ so that the formula for y

actually defines a vector in H. To this end, let B denote any finite subset of A and set

z =
1(∑

α∈B |ϕ(eα)|2
)1/2 ∑

α∈B
ϕ(eα) eα.

Then ‖z‖ = 1, so we find that

‖ϕ‖H∗ ≥ |ϕ(z)| =

∣∣∣∣∣ 1(∑
α∈B |ϕ(eα)|2

)1/2 ∑
α∈B

ϕ(eα)ϕ(eα)

∣∣∣∣∣
=

∣∣∣∣∣ 1(∑
α∈B |ϕ(eα)|2

)1/2 ∑
α∈B
|ϕ(eα)|2

∣∣∣∣∣ =

(∑
α∈B
|ϕ(eα)|2

)1/2

.

Finally take the sup over all finite B ⊆ A to get

‖ϕ‖H∗ ≥

(∑
α∈A
|ϕ(eα)|2

)1/2

.

Note: However you built y, you lost points if you did not prove uniqueness.



Problem 3: (16p) Set I = [0, π] and let H denote the Hilbert space H = L2(I) with the usual
norm. Define f, g, h ∈ H via

f(x) = sin(x), g(x) = sin(3x), h(x) = x.

Set N = Span{f, g}, and M = N⊥. Evaluate

d = inf
u∈M
‖h− u‖.

In the event that you make any computational errors, your score on this problem will depend
strongly on whether you clearly present the argument on how you determine d.

Solution:

First observe that H = M ⊕N , so the vector h can be uniquely decomposed as h = m + n with
m ∈M and n ∈ N . Then d = ‖n‖ since n = h−m, where m is the closest point in M to h.

In order to determine n, we will build an orthonormal basis for N . Simple calculations show that∫ π

0
|f(x)|2 dx =

π

2
,

∫ π

0
|g(x)|2 dx =

π

2
,

∫ π

0
f(x)g(x) dx = 0.

Consequently, an ON basis for H is given by the two vectors

u1(x) = β sin(x), u2(x) = β sin(3x), where β =
√

2/π.

The n = (u1, h)u1 + (u2, h)u2. The coefficients are easily determined via partial integration:

(u1, h) = β

∫ π

0
x sin(x) dx = β [−x cos(x)]π0 + β

∫ π

0
cos(x) dx = βπ + 0,

(u2, h) = β

∫ π

0
x sin(3x) dx = β [−x cos(3x)/3]π0 + β

∫ π

0
cos(3x)/3 dx = βπ/3 + 0.

Finally, we get

d = ‖n‖ =
√
|(u1, h)|2 + |(u2, h)|2 =

√
β2π2 + β2π2/9 =

√
2π + 2π/9 =

√
20π/9 = 2

√
5π/3.

Note: Very few answers identified d correctly. Forgetting to normalize the basis vectors for N was
particularly common. However, you got a healthy amount of points as long as you described a
correct basic idea. The key observation I looked for was that d = ‖n‖ where n is the orthogonal
projection onto N (not onto M !). Observe that there is no need in this problem to describe M in
any detail, or to build an ON basis for M .



Problem 4: (16p) Set I = [0, 2], set X = C(I), and let k be a continuous function on I × I.
Consider the operator T ∈ B(X) defined by

[Tu](x) =

∫ 2

0
k(x, y)u(y) dy, x ∈ I.

(a) State the Arzelá-Ascoli theorem.

(b) Prove that the operator T is compact.

Solution:

(a) See the text book.

(b) We will prove that T is compact by showing that it maps any bounded set to a pre-compact
set. Let B be a bounded set in X. Set M = sup{‖u‖ : u ∈ B}. We will prove that TB is bounded
and equicontinuous. Then, since I is compact, the AA theorem asserts that TB is pre-compact
and we will be done.

Proof that TB is bounded: Set C = sup{|k(x, y)| : (x, y) ∈ I× I}. Since k is continuous, and I× I
is compact, we know that C is finite. Then for any u ∈ B, we have

‖Tu‖ = sup
x∈I

∣∣∣∣∫ 2

0
k(x, y)u(y) dy

∣∣∣∣ ≤ sup
x∈I

∫ 2

0
|k(x, y)| |u(y)| dy ≤ sup

x∈I

∫ 2

0
CM dy = 2CM.

Proof that TB is equicontinuous: Fix ε > 0. Since k is continuous on the compact set I × I, there
is a δ > 0 such that for every y ∈ I, we have

|x− z| < δ, ⇒ |k(x, y)− k(z, y)| < ε/(2M).

Suppose |x− z| < δ. Then for any v ∈ TB, let u ∈ B be such that v = Tu. Then

|v(x)−v(z)| =
∣∣∣∣∫ 2

0

(
k(x, y)− k(z, y)

)
u(y) dy

∣∣∣∣ ≤ ∫ 2

0

∣∣k(x, y)−k(z, y)
∣∣ |u(y)| dy <

∫ 2

0

ε

2M
M dy = ε.

Note: Some solutions did not include a proof that T is bounded. Since this fact was listed in the
problem formulation, and since I did not explicitly ask you to prove it, I did not deduct any points
for this omission.

Some solutions to (b) used an incorrect definition of a compact operator. If you used a definition
that sidesteps the compactness part, you got zero points. Beside the definition used in the solution
above, the other one that is convenient is that T is compact if the image of any bounded sequence
has a convergent subsequence.



Problem 5: (16p) Let X denote the space of all continuous functions on R that are periodic with
period 1. In other words, if u ∈ X, then

u(x) = u(x+ 1), ∀x ∈ R.
We equip X with the norm

‖u‖ = sup
x∈[0,1]

|u(x)|.

Observe that a function u in X is uniquely defined by its values on the interval I = [0, 1] (or on
[0, 1), for that matter, since u(0) = u(1)). Define for n = 1, 2, 3, . . . the operators

[Tnu](x) = u(x− 1/n).

(a) (6p) Does (Tn)∞n=1 converge strongly? Please motivate your answer carefully.
(b) (6p) Does (Tn)∞n=1 converge in norm? Please motivate your answer carefully.

(c) (4p) Do your answers change if X is instead equipped with the norm ‖u‖ =
∫ 1
0 |u(x)| dx?

Solution:

(a) We will prove that (Tn) converges strongly to the identity operator I. Fix u ∈ X, and pick any
ε > 0. Since u is a continuous function on the compact set [−1, 1] (for instance), we know that u
is uniformly continuous on this interval. Consequently, there is a δ > 0 such that

|x− y| < δ ⇒ |u(x)− u(y)| < ε.

Suppose that n > 1/δ. Then

‖u− Tnu‖ = sup
x∈[0,1]

|u(x)− u(x− 1/n)| ≤ {Use that|x− (x− 1/n)| = 1/n < δ} ≤ sup
x∈[0,1]

ε = ε.

(b) Since Tn → I strongly, the only possible point that (Tn) could converge to in norm is I. We
will prove that ‖Tn− I‖ ≥ 1 for every n, which shows that (Tn) does not converge in norm. Define
for n = 1, 2, 3, . . . the functions

ψn =

{
1− 3n|x|, for |x| < 1/(3n),
0, for |x| ≥ 1/(3n).

and

un(x) =

∞∑
n=−∞

ψn(x− n).

Then ‖un‖ = 1 and un ∈ X. Moreover,

‖I − Tn‖ ≥ ‖un − Tnun‖ = sup
x∈[0,1]

|un(x)− un(x− 1/n)| ≥ |un(0)− un(−1/n)| = |1− 0| = 1.

(c) The answers remain the same. For strong convergence, note that if Tnu → u uniformly, then

it is necessarily the case that
∫ 1
0 |u− Tnu| dx→ 0. To prove that (Tn) does not converge in norm,

an analogous argument works if you define ψn as in the solution to (b), and then define un via

un(x) =
∞∑

n=−∞
3nψn(x− n).

Then ‖un‖ = 1, and ‖I − Tn‖ ≥ ‖un − Tnun‖ = 2.

Note: In proving part (a), the uniform continuity of u is important. Many solutions had a simple
claim that ‖u−Tnu‖ = supx∈[0,1] |u(x)−u(x−1/n)| → 0. If no motivation was given for this step,
you lost 2 points.


