APPM5440 — Applied Analysis: Section exam 2 — Solutions

17:15 – 18:30, Oct. 30, 2012. Closed books.

Problem 3: (20p) Define for n = 1, 2, 3, ... the function $f_n : \mathbb{R} \to \mathbb{R}$ via

$$f_n(x) = e^{-n(x-n)^2}$$

Let N be a fixed positive integer. In the table below, mark each box corresponding with a true statement with the letter "T". No motivations required.

Solution:

Solution:				
	Ω is equicont.	Ω is uniformly	Ω is closed	Ω is pre-compact
	for every $x \in I$	equicont. on I	in $C(I)$	in $C(I)$
$\Omega = \{f_n\}_{n=1}^N \text{ and } I = \mathbb{R}$	Т	Т	Т	Т
$\Omega = \{f_n\}_{n=1}^{\infty} \text{ and } I = \mathbb{R}$	Т		Т	
$\Omega = \{f_n\}_{n=1}^N$ and $I = [-N, N]$	Т	Т	Т	Т
$\Omega = \{f_n\}_{n=1}^{\infty}$ and $I = [-N, N]$	Т	Т		Т

Some comments:

•
$$\Omega = \{f_n\}_{n=1}^N$$
 and $I = \mathbb{R}$

Recall that any finite set of continuous functions is necessarily equicontinuous. Further, note that $\sup_n \sup_{x \in I} |f'_n(x)| \leq C\sqrt{N}$ (where, I think, $C = \sqrt{2}e^{-1/2}$) so the set is uniformly Lipschitz, and therefore uniformly equicontinuous. Ω is closed since it consists of a finite set of points. It is pre-compact since it is finite (and therefore obviously totally bounded).

• $\Omega = \{f_n\}_{n=1}^{\infty}$ and $I = \mathbb{R}$.

The sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly to zero on any interval [a, b]; in consequence, the set Ω is equicontinuous on any fixed x. However, for any $\delta > 0$, you can always find an n such that $|f_n(n) - f_n(n+\delta)| \ge 1/2$, so the sequence is not uniformly equicontinuous. Ω is closed since it consists of a set of well-separated points $(||f_n - f_m|| \ge 1/2$ for any $m \neq n$) so there are no accumulation points. The set is not pre-compact since it is not totally bounded (there exist no finite cover of balls with radius 1/3, for instace).

•
$$\Omega = \{f_n\}_{n=1}^N$$
 and $I = [-N, N]$.

Recall that any finite set of continuous functions is necessarily equicontinuous. It is uniformly equicontinuous since I is compact. Ω is closed since it consists of a finite set of points. It is pre-compact since it is finite (and therefore obviously totally bounded).

•
$$\Omega = \{f_n\}_{n=1}^{\infty}$$
 and $I = [-N, N].$

 Ω is uniformly equicontinuous since $\sup_n \sup_{x \in I} |f'_n(x)|$ is finite. Ω is not closed since $f_n \to 0$ uniformly, but $0 \notin \Omega$. Ω is pre-compact by the Arzela theorem (equicontinuous and bounded, while I is compact).

Problem 4: (30p) Set I = [0, 1].

(a) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in C(I) such that $\operatorname{Lip}(f_n) \leq 1$. Prove that if $(f_n)_{n=1}^{\infty}$ converges uniformly to a function f, then $\operatorname{Lip}(f) \leq 1$.

(b) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in C(I) such that $\operatorname{Lip}(f_n) \leq 1$. Does (f_n) necessarily have a convergent subsequence? Please offer a proof or a counter-example.

(c) Set $\Omega = \{f \in C(I) : \text{Lip}(f) \leq 1 \text{ and } f(0) = 0\}$ Is the set Ω closed? Compact? Pre-compact?

(d) Is the set $\Omega = \{f \in C(I) : ||f|| \le 1 \text{ and } \operatorname{Lip}(f) \le 1\}$ dense in the unit ball of C(I)?

Solution:

(a)

$$\operatorname{Lip}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} = \sup_{x \neq y} \lim_{n \to \infty} \frac{|f_n(x) - f_n(y)|}{|x - y|}$$
$$\leq \liminf_{n \to \infty} \sup_{x \neq y} \frac{|f_n(x) - f_n(y)|}{|x - y|} = \liminf_{n \to \infty} \operatorname{Lip}(f_n) \leq 1.$$

(b) No, consider $f_n(x) = n$ (constant functions). Note that while the sequence is equicontinuous, the AA theorem does not apply since we are not assured it is bounded.

(c) Ω is closed. To prove this, suppose $f_n \to f$ in C(I) and $f_n \in \Omega$. By the result in (a), we know that $\operatorname{Lip}(f) \leq 1$. Since uniform convergence implies point-wise convergence, we find $f(0) = \lim_{n \to \infty} f_n(0) = 0$. Consequently $f \in \Omega$.

 Ω is bounded since if $f \in \Omega$, then

$$|f(x)| = |f(0) + (f(x) - f(0))| \le |f(0)| + |f(x) - f(0)| \le |f(0)| + \operatorname{Lip}(f)|x - 0| \le 0 + 1 \cdot 1 = 1.$$

Since I is compact, and Ω is bounded and equicontinuous, the AA-theorem applies so we know that Ω is pre-compact. Since Ω is also closed, it is compact.

(d) No. Consider the function f(1) = 1 - 2x. If $||f - g|| \le 1/3$, then we know that

$$\begin{split} \operatorname{Lip}(g) &\geq \frac{|g(1) - g(0)|}{|1 - 0|} = |(g(1) - f(1)) + (f(1) - f(0)) + (f(0) - g(0))| \\ &\geq |f(1) - f(0)| - |g(1) - f(1)| - |g(0) - f(0)| \geq 2 - 1/3 - 1/3 = 4/3. \end{split}$$

So $g \notin \Omega$.

Problem 5: (20p) Let f = f(x, y) be a continuous bounded real-valued function on \mathbb{R}^2 , and let g = g(x) be a continuous real-valued function on \mathbb{R} such that $||g||_{\mathfrak{u}} \leq 1$. Now consider for a positive number δ the equation

(1)
$$\begin{cases} u_1(x) = \int_0^\delta f(x,y) \left(u_2(y)\right)^2 dy + g(x), \\ u_2(x) = \frac{1}{3}u_1(x) + \frac{1}{3}\left(u_2(x)\right)^2. \end{cases}$$

Show that for δ small enough, the equation (1) is guaranteed to have a unique solution pair (u_1, u_2) of continuous functions on $[0, \delta]$ such that $||u_2||_u \leq 1$. What can you say about $||u_1||_u$?

Solution 1: Inserting the first equation into the second we find that u_2 must satisfy $u_2 = T(u_2)$ where

$$[T(u_2)](x) = \frac{1}{3} \int_0^\delta f(x,y) (u_2(y))^2 \, dy + \frac{1}{3} g(x) + \frac{1}{3} (u_2(x))^2.$$

Set $M = ||f||_{u}$. We know that M is finite since f is bounded.

Set $I = [0, \delta]$ and $\Omega = \{v \in C(I) : ||v||_u \leq 1\}$. We will show that T is a contraction on Ω if δ is small enough. Since Ω is a closed metric space, the CMT will then assure us a unique solution.

Verify that T maps Ω to Ω : Suppose $u_2 \in \Omega$. Then

$$||T(u_2)|| \le \frac{1}{3}M\delta||u_2||^2 + \frac{1}{3} + \frac{1}{3}||u_2||^2 \le \frac{1}{3}M\delta + \frac{1}{3} + \frac{1}{3}.$$

We see that $T(u_2) \in \Omega$ if $M\delta \leq 1$.

Verify that T is a contraction: Suppose $u_2, v_2 \in \Omega$. Then

$$\begin{aligned} ||T(u_2) - T(v_2)|| &\leq \frac{1}{3}M\delta \, ||u_2^2 - v_2^2|| + \frac{1}{3} \, ||u_2^2 - v_2^2|| = \frac{1}{3}(M\delta + 1) \, ||u_2^2 - v_2^2|| \\ &\leq \frac{1}{3}(M\delta + 1)(||u_2|| + ||v_2||)||u_2 - v_2|| \leq \frac{2}{3}(M\delta + 1)||u_2 - v_2||. \end{aligned}$$

We see that T is a contraction if $M\delta < 1/2$.

We have shown that T is a contraction on Ω if $M\delta < 1/2$.

As for the bound on u_1 , simply use the first equation to find

$$||u_1|| \le M\delta ||u_2||^2 + ||g|| \le M\delta + 1 \le 3/2.$$

Solution 2: We can write (1) as the fixed point problem u = T(u), where T is an operator on the set of pairs of continuous functions on the set $I = [0, \delta]$:

$$T\left(\left[\begin{array}{c}u_1\\u_2\end{array}\right]\right)(x) = \left[\begin{array}{c}\int_0^\delta f(x,y)\left(u_2(y)\right)^2 dy + g(x)\\\frac{1}{3}u_1(x) + \frac{1}{3}\left(u_2(x)\right)^2\end{array}\right].$$

 Set

$$\Omega = \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} : ||u_1||_{\mathbf{u}} \le C \text{ and } ||u_2||_{\mathbf{u}} \le 1 \right\}$$

for a suitably chosen C. We equip Ω with the norm

$$||| \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] ||| = ||u_1||_{\mathbf{u}} + ||u_2||_{\mathbf{u}}.$$

Let us show that T is a contraction on Ω if C and δ are chosen appropriately. Set $M = ||f||_{u}$. First make sure that $T(\Omega) \subseteq \Omega$. We find

$$||T_1(u)||_{\mathbf{u}} \le M\delta ||u_2||^2 + ||g|| \le M\delta + 1,$$

$$||T_2(u)||_{\mathbf{u}} \le \frac{1}{3}||u_1|| + \frac{1}{3}||u_2||^2 \le \frac{1}{3}C + \frac{1}{3}.$$

This leads to the conditions that $C \leq 2$ and $M\delta + 1 \leq C$.

Now check the contraction property:

$$\begin{split} |||T(u) - T(v)||| &= ||T_1(u) - T_1(v)||_u + ||T_2(u) - T_2(v)||_u \\ &\leq M\delta \, ||u_2^2 - v_2^2|| + \frac{1}{3}||u_1 - v_1|| + \frac{1}{3} \, ||u_2^2 - v_2^2|| \\ &= (M\delta + \frac{1}{3}) \, ||u_2^2 - v_2^2|| + \frac{1}{3}||u_1 - v_1|| \\ &\leq (M\delta + \frac{1}{3}) \, (||u_2|| + ||v_2||) \, ||u_2 - v_2|| + \frac{1}{3}||u_1 - v_1|| \\ &\leq 2(M\delta + \frac{1}{3}) \, (||u_2 - v_2|| + ||u_1 - v_1||) \\ &= 2(M\delta + \frac{1}{3}) \, |||u_2 - v_2|||. \end{split}$$

This leads to the condition that $M\delta < 1/6$.

We find that T is a contraction on Ω if $M\delta < 1/6$ and C = 7/6.

Note: You can prove a better result (larger δ) by inserting $u_2^2 = 3u_2 - u_1$ in the first equation:

$$T\left(\left[\begin{array}{c}u_{1}\\u_{2}\end{array}\right]\right)(x) = \left[\begin{array}{c}\int_{0}^{\delta} f(x,y)\left(3\,u_{2}(y) - u_{1}(y)\right)dy + g(x)\\\frac{1}{3}u_{1}(x) + \frac{1}{3}\left(u_{2}(x)\right)^{2}\end{array}\right].$$