APPM5440 - Applied Analysis: Section exam 2 - Solutions
 17:15-18:30, Oct. 30, 2012. Closed books.

Problem 3: (20p) Define for $n=1,2,3, \ldots$ the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
f_{n}(x)=e^{-n(x-n)^{2}} .
$$

Let N be a fixed positive integer. In the table below, mark each box corresponding with a true statement with the letter "T". No motivations required.

Solution:

Ω is equicont.				
	Ω is uniformly for every $x \in I$ equicont. on I	Ω is closed in $C(I)$	Ω is pre-compact in $C(I)$	
$\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=\mathbb{R}$	T	T	T	T
$\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=\mathbb{R}$	T		T	
$\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=[-N, N]$	T	T	T	T
$\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=[-N, N]$	T	T		T

Some comments:

- $\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=\mathbb{R}$.

Recall that any finite set of continuous functions is necessarily equicontinuous. Further, note that $\sup _{n} \sup _{x \in I}\left|f_{n}^{\prime}(x)\right| \leq C \sqrt{N}$ (where, I think, $C=\sqrt{2} e^{-1 / 2}$) so the set is uniformly Lipschitz, and therefore uniformly equicontinuous. Ω is closed since it consists of a finite set of points. It is pre-compact since it is finite (and therefore obviously totally bounded).

- $\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=\mathbb{R}$.

The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to zero on any interval $[a, b]$; in consequence, the set Ω is equicontinuous on any fixed x. However, for any $\delta>0$, you can always find an n such that $\left|f_{n}(n)-f_{n}(n+\delta)\right| \geq 1 / 2$, so the sequence is not uniformly equicontinuous. Ω is closed since it consists of a set of well-separated points ($\left\|f_{n}-f_{m}\right\| \geq 1 / 2$ for any $m \neq n$) so there are no accumulation points. The set is not pre-compact since it is not totally bounded (there exist no finite cover of balls with radius $1 / 3$, for instace).

- $\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=[-N, N]$.

Recall that any finite set of continuous functions is necessarily equicontinuous. It is uniformly equicontinuous since I is compact. Ω is closed since it consists of a finite set of points. It is pre-compact since it is finite (and therefore obviously totally bounded).

- $\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=[-N, N]$.
Ω is uniformly equicontinuous since $\sup _{n} \sup _{x \in I}\left|f_{n}^{\prime}(x)\right|$ is finite. Ω is not closed since $f_{n} \rightarrow 0$ uniformly, but $0 \notin \Omega$. Ω is pre-compact by the Arzela theorem (equicontinuous and bounded, while I is compact).

Problem 4: (30p) Set $I=[0,1]$.
(a) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $C(I)$ such that $\operatorname{Lip}\left(f_{n}\right) \leq 1$. Prove that if $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to a function f, then $\operatorname{Lip}(f) \leq 1$.
(b) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $C(I)$ such that $\operatorname{Lip}\left(f_{n}\right) \leq 1$. Does $\left(f_{n}\right)$ necessarily have a convergent subsequence? Please offer a proof or a counter-example.
(c) Set $\Omega=\{f \in C(I): \operatorname{Lip}(f) \leq 1$ and $f(0)=0\}$ Is the set Ω closed? Compact? Pre-compact?
(d) Is the set $\Omega=\{f \in C(I):\|f\| \leq 1$ and $\operatorname{Lip}(f) \leq 1\}$ dense in the unit ball of $C(I)$?

Solution:

(a)

$$
\begin{aligned}
& \operatorname{Lip}(f)=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|}=\sup _{x \neq y} \lim _{n \rightarrow \infty} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|} \\
& \leq \liminf _{n \rightarrow \infty} \sup _{x \neq y} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|}=\liminf _{n \rightarrow \infty} \operatorname{Lip}\left(f_{n}\right) \leq 1
\end{aligned}
$$

(b) No, consider $f_{n}(x)=n$ (constant functions). Note that while the sequence is equicontinuous, the AA theorem does not apply since we are not assured it is bounded.
(c) Ω is closed. To prove this, suppose $f_{n} \rightarrow f$ in $C(I)$ and $f_{n} \in \Omega$. By the result in (a), we know that $\operatorname{Lip}(f) \leq 1$. Since uniform convergence implies point-wise convergence, we find $f(0)=\lim _{n \rightarrow \infty} f_{n}(0)=0$. Consequently $f \in \Omega$.
Ω is bounded since if $f \in \Omega$, then

$$
|f(x)|=|f(0)+(f(x)-f(0))| \leq|f(0)|+|f(x)-f(0)| \leq|f(0)|+\operatorname{Lip}(f)|x-0| \leq 0+1 \cdot 1=1
$$

Since I is compact, and Ω is bounded and equicontinuous, the AA-theorem applies so we know that Ω is pre-compact. Since Ω is also closed, it is compact.
(d) No. Consider the function $f(1)=1-2 x$. If $\|f-g\| \leq 1 / 3$, then we know that

$$
\begin{aligned}
\operatorname{Lip}(g) \geq \frac{|g(1)-g(0)|}{|1-0|} & =|(g(1)-f(1))+(f(1)-f(0))+(f(0)-g(0))| \\
& \geq|f(1)-f(0)|-|g(1)-f(1)|-|g(0)-f(0)| \geq 2-1 / 3-1 / 3=4 / 3
\end{aligned}
$$

So $g \notin \Omega$.

Problem 5: (20p) Let $f=f(x, y)$ be a continuous bounded real-valued function on \mathbb{R}^{2}, and let $g=g(x)$ be a continuous real-valued function on \mathbb{R} such that $\|g\|_{\mathrm{u}} \leq 1$. Now consider for a positive number δ the equation

$$
\left\{\begin{array}{l}
u_{1}(x)=\int_{0}^{\delta} f(x, y)\left(u_{2}(y)\right)^{2} d y+g(x), \tag{1}\\
u_{2}(x)=\frac{1}{3} u_{1}(x)+\frac{1}{3}\left(u_{2}(x)\right)^{2}
\end{array}\right.
$$

Show that for δ small enough, the equation (1) is guaranteed to have a unique solution pair (u_{1}, u_{2}) of continuous functions on $[0, \delta]$ such that $\left\|u_{2}\right\|_{\mathrm{u}} \leq 1$. What can you say about $\left\|u_{1}\right\|_{\mathrm{u}}$?

Solution 1: Inserting the first equation into the second we find that u_{2} must satisfy $u_{2}=T\left(u_{2}\right)$ where

$$
\left[T\left(u_{2}\right)\right](x)=\frac{1}{3} \int_{0}^{\delta} f(x, y)\left(u_{2}(y)\right)^{2} d y+\frac{1}{3} g(x)+\frac{1}{3}\left(u_{2}(x)\right)^{2} .
$$

Set $M=\|f\|_{\mathrm{u}}$. We know that M is finite since f is bounded.
Set $I=[0, \delta]$ and $\Omega=\left\{v \in C(I):\|v\|_{\mathrm{u}} \leq 1\right\}$. We will show that T is a contraction on Ω if δ is small enough. Since Ω is a closed metric space, the CMT will then assure us a unique solution.

Verify that T maps Ω to Ω : Suppose $u_{2} \in \Omega$. Then

$$
\left\|T\left(u_{2}\right)\right\| \leq \frac{1}{3} M \delta\left\|u_{2}\right\|^{2}+\frac{1}{3}+\frac{1}{3}\left\|u_{2}\right\|^{2} \leq \frac{1}{3} M \delta+\frac{1}{3}+\frac{1}{3}
$$

We see that $T\left(u_{2}\right) \in \Omega$ if $M \delta \leq 1$.
Verify that T is a contraction: Suppose $u_{2}, v_{2} \in \Omega$. Then

$$
\begin{aligned}
\left\|T\left(u_{2}\right)-T\left(v_{2}\right)\right\| \leq \frac{1}{3} M \delta \| u_{2}^{2}- & v_{2}^{2}\left\|+\frac{1}{3}\right\| u_{2}^{2}-v_{2}^{2}\left\|=\frac{1}{3}(M \delta+1)\right\| u_{2}^{2}-v_{2}^{2} \| \\
& \leq \frac{1}{3}(M \delta+1)\left(\left\|u_{2}\right\|+\left\|v_{2}\right\|\right)\left\|u_{2}-v_{2}\right\| \leq \frac{2}{3}(M \delta+1)\left\|u_{2}-v_{2}\right\| .
\end{aligned}
$$

We see that T is a contraction if $M \delta<1 / 2$.
We have shown that T is a contraction on Ω if $M \delta<1 / 2$.
As for the bound on u_{1}, simply use the first equation to find

$$
\left\|u_{1}\right\| \leq M \delta\left\|u_{2}\right\|^{2}+\|g\| \leq M \delta+1 \leq 3 / 2
$$

Solution 2: We can write (1) as the fixed point problem $u=T(u)$, where T is an operator on the set of pairs of continuous functions on the set $I=[0, \delta]$:

$$
T\left(\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)(x)=\left[\begin{array}{c}
\int_{0}^{\delta} f(x, y)\left(u_{2}(y)\right)^{2} d y+g(x) \\
\frac{1}{3} u_{1}(x)+\frac{1}{3}\left(u_{2}(x)\right)^{2}
\end{array}\right]
$$

Set

$$
\Omega=\left\{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]:\left\|u_{1}\right\|_{\mathrm{u}} \leq C \text { and }\left\|u_{2}\right\|_{\mathrm{u}} \leq 1\right\}
$$

for a suitably chosen C. We equip Ω with the norm

$$
\left\|\left\|\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right\|\right\|=\left\|u_{1}\right\|_{\mathrm{u}}+\left\|u_{2}\right\|_{\mathrm{u}}
$$

Let us show that T is a contraction on Ω if C and δ are chosen appropriately. Set $M=\|f\|_{\mathrm{u}}$.
First make sure that $T(\Omega) \subseteq \Omega$. We find

$$
\begin{aligned}
& \left\|T_{1}(u)\right\|_{\mathrm{u}} \leq M \delta\left\|u_{2}\right\|^{2}+\|g\| \leq M \delta+1 \\
& \left\|T_{2}(u)\right\|_{\mathrm{u}} \leq \frac{1}{3}\left\|u_{1}\right\|+\frac{1}{3}\left\|u_{2}\right\|^{2} \leq \frac{1}{3} C+\frac{1}{3}
\end{aligned}
$$

This leads to the conditions that $C \leq 2$ and $M \delta+1 \leq C$.
Now check the contraction property:

$$
\begin{aligned}
\|T(u)-T(v)\| \| & =\left\|T_{1}(u)-T_{1}(v)\right\|_{\mathrm{u}}+\left\|T_{2}(u)-T_{2}(v)\right\|_{\mathrm{u}} \\
& \leq M \delta\left\|u_{2}^{2}-v_{2}^{2}\right\|+\frac{1}{3}\left\|u_{1}-v_{1}\right\|+\frac{1}{3}\left\|u_{2}^{2}-v_{2}^{2}\right\| \\
& =\left(M \delta+\frac{1}{3}\right)\left\|u_{2}^{2}-v_{2}^{2}\right\|+\frac{1}{3}\left\|u_{1}-v_{1}\right\| \\
& \leq\left(M \delta+\frac{1}{3}\right)\left(\left\|u_{2}\right\|+\left\|v_{2}\right\|\right)\left\|u_{2}-v_{2}\right\|+\frac{1}{3}\left\|u_{1}-v_{1}\right\| \\
& \leq 2\left(M \delta+\frac{1}{3}\right)\left(\left\|u_{2}-v_{2}\right\|+\left\|u_{1}-v_{1}\right\|\right) \\
& =2\left(M \delta+\frac{1}{3}\right)\left\|\mid u_{2}-v_{2}\right\| \| .
\end{aligned}
$$

This leads to the condition that $M \delta<1 / 6$.
We find that T is a contraction on Ω if $M \delta<1 / 6$ and $C=7 / 6$.
Note: You can prove a better result (larger δ) by inserting $u_{2}^{2}=3 u_{2}-u_{1}$ in the first equation:

$$
T\left(\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)(x)=\left[\begin{array}{c}
\int_{0}^{\delta} f(x, y)\left(3 u_{2}(y)-u_{1}(y)\right) d y+g(x) \\
\frac{1}{3} u_{1}(x)+\frac{1}{3}\left(u_{2}(x)\right)^{2}
\end{array}\right]
$$

