APPM5440 - Applied Analysis: Section exam 1

17:15-18:30, Sep. 25, 2012. Closed books.
Please motivate all answers unless the problem explicitly states otherwise.
Problem 1: (24 points) The following questions are worth 8 points each.
(a) Specify which of the following could potentially be the set C of cluster points of a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of real numbers. Any negative answer needs a brief motivation.
(1) $C=[0,1]$.
(2) $C=(0,1)$.
(3) $C=[0, \infty)$.
(4) $C=\mathbb{Q}$ (the set of rational numbers).
(Recall that given a sequence $\left(x_{n}\right)$, its set of cluster points is defined as the set of limit points of sub-sequences of $\left(x_{n}\right)$.)
(b) Let (X, d) be a metric space. State the definition of the completion of (X, d).
(c) Which of the following statements are true (no motivations required):
(1) If $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence of real numbers, then $\limsup x_{n}$ exists.
(2) If (X, d) is a compact metric space, and $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in X with the property that every convergent subsequence has the same limit x, then $x_{n} \rightarrow x$.
(3) Every compact subset of a metric space is necessarily closed.
(4) If (X, d) is a compact metric space and $f: X \rightarrow(0,1)$ is continuous, then the function $g(x)=1 /(1-f(x))$ is bounded on X.
(5) Let X be a normed linear space, and the B denote the unit ball around the origin. Then B is necessarily totally bounded.

Problem 2: (24 points) Suppose that $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$, and $\left(X_{3}, d_{3}\right)$ are metric spaces, and that $f: X_{1} \rightarrow X_{2}$ and $g: X_{2} \rightarrow X_{3}$ are continuous. Prove that the composition $h=g \circ f$ defined by

$$
h: X_{1} \rightarrow X_{3}: x \mapsto g(f(x))
$$

is continuous. State explicitly which definition of continuity you use in your proof.
Problem 3: (24 points) Set $I=[-1,1]$ and let X denote the set of real valued continuous functions on I. For $f \in X$, define the norm

$$
\|f\|=\int_{-1}^{1}|f(x)| d x
$$

Show that X is not a Banach space with respect to this norm.
Problem 4: (28 points) Let X denote the set of sequences of real numbers $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $\sum_{n=1}^{\infty} x_{n}^{2}<\infty$, and define for $x \in X$ the norm $\|x\|=\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}$. Consider the following four subsets of X :

- Let d be a positive integer d and set $A=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{d}, 0,0, \ldots\right): \sum_{n=1}^{d} x_{n}^{2} \leq 1\right\}$.
- $B=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty} n^{2} x_{n}^{2} \leq 1\right\}$.
- $C=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty} x_{n}^{2} \leq 1\right\}$.
- $D=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty}\left|x_{n}\right|=1\right\}$.

Which of the sets A, B, C, and D are compact?

