Hints for homework set 12 - APPM5440 — Fall 2012

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on $I=[0,1]$. For $f \in X$, set $\|f\|=\sup _{x \in I}|f(x)|$. For $f \in X$, define

$$
\varphi_{1}(f)=\int_{0}^{1} f(x) d x, \quad \varphi_{2}(f)=f(0), \quad \varphi_{3}(f)=f^{\prime}(1 / 2), \quad \varphi_{4}(f)=f^{\prime}(1 / 3) .
$$

Prove that $\varphi_{j} \in X^{*}$ for $j=1,2,3,4$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis for X^{*}. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis for X^{*}.

Solution: You can easily prove that all the φ_{j} 's are linear.

To prove that each φ_{j} is continuous, simply invoke the theorem that any linear map on a finite dimensional space is continuous. For fun, let's work it out explicitly for $j=1,2$:

$$
\begin{gathered}
\left|\varphi_{1}(f)\right| \leq \int_{0}^{1}|f(x)| d x \leq \int_{0}^{1}\|f\| d x=\|f\| . \\
\left|\varphi_{2}(f)\right|=|f(0)| \leq\|f\| .
\end{gathered}
$$

Proving directly that φ_{3} and φ_{4} are bounded takes a little more work.

To prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis, we first observe that since X has dimension three, we know that X^{*} also has dimension three. So all we need to prove is that the set is linearly independent. Suppose

$$
c_{1} \varphi_{1}+c_{2} \varphi_{2}+c_{3} \varphi_{3}=0
$$

In other words, for every $f \in X$, we must have $c_{1} \varphi_{1}(f)+c_{2} \varphi_{2}(f)+c_{3} \varphi_{3}(f)=0$. By plugging in $f=1, f=x, f=x^{2}$, we get three equations for c_{1}, c_{2}, and c_{3},

$$
\begin{aligned}
f=1 & \Rightarrow c_{1}+c_{2}=0 \\
f=x & \Rightarrow(1 / 2) c_{1}+c_{3}=0 \\
f=x^{2} & \Rightarrow(1 / 3) c_{1}+c_{3}=0
\end{aligned}
$$

It is easy to show that the only solution is $c_{1}=c_{2}=c_{3}=0$.

To prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis, we will prove that they are linearly dependent. Suppose

$$
c_{1} \varphi_{1}+c_{2} \varphi_{2}+c_{4} \varphi_{4}=0
$$

By plugging in $f=1, f=x, f=x^{2}$, we get three equations for c_{1}, c_{2}, and c_{4},

$$
\begin{aligned}
f=1 & \Rightarrow c_{1}+c_{2}=0 \\
f=x & \Rightarrow(1 / 2) c_{1}+c_{4}=0, \\
f=x^{2} & \Rightarrow(1 / 3) c_{1}+(2 / 3) c_{4}=0
\end{aligned}
$$

This system has infinitely many solutions. For any $t \in \mathbb{R}$, the triple $\left\{c_{1}=t, c_{2}=-t, c_{4}=-t / 2\right\}$ is a solution. In particular, for $t=1$ we find that

$$
\varphi_{1}-\varphi_{2}-\frac{1}{2} \varphi_{4}=0 .
$$

Problem 2: Let $X=\ell^{2}$. Recall from class that every $\varphi \in X^{*}$ is of the form $\varphi(x)=\sum x_{n} y_{n}$ for some $y \in X$. Set $D=\left\{x \in \ell^{2}:\|x\|=1\right\}$. Prove that the weak closure of D is the closed unit ball in ℓ^{2}. (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that $\|x\|<1$ explicitly construct a sequence $\left(x^{(n)}\right)_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $\left\|x^{(n)}\right\|=1$.)

Set $Y=\ell^{3}$. What is Y^{*} ? Prove that the weak closure of the surface of the unit ball in ℓ^{3} is the closed unit ball in ℓ^{3}.

Solution: Fix $x \in X$ such that $\|x\|<1$. For $n=1,2,3, \ldots$, define α_{n} via

$$
\alpha_{n}=\sqrt{1-\sum_{j \neq n} x_{j}^{2}}
$$

Since $\|x\|<1$, we know that $0<\alpha_{n} \leq 1$ for every n. Then define $x^{(n)}$ as the sequence obtained by swapping x_{n} for α_{n}. In other words

$$
x^{(n)}=\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}, \alpha_{n}, x_{n+1}, x_{n+2}, \ldots\right) .
$$

We find that

$$
\left\|x^{(n)}\right\|^{2}=\alpha_{n}^{2}+\sum_{j \neq n} x_{j}^{2}=1
$$

so $x^{(n)} \in D$ for every n.
It remains to show that $x^{(n)} \rightharpoonup x$. Fix $y \in X$. Then

$$
\left(x-x_{n}, y\right)=\left(x_{n}-\alpha_{n}\right) y_{n} .
$$

Since $\left\|y_{n}\right\| \rightarrow 0$ and $\left|x_{n}-\alpha_{n}\right| \leq\left|x_{n}\right|+\left|\alpha_{n}\right| \leq 2$, we find that

$$
\lim _{n \rightarrow \infty}\left(x-x_{n}, y\right)=0
$$

In treating the set Y, we first recall that the dual of ℓ^{p} for $p \in(1, \infty)$ is the set ℓ^{q} where $1 / p+1 / q=$ 1 . When $p=3$, we find $q=3 / 2$. In other words, any $\varphi \in Y^{3}$ takes the form

$$
\varphi(x)=\sum_{n=1}^{\infty} x_{n} y_{n}
$$

where $y \in \ell^{3 / 2}$. The density argument now follows pretty much the same lines as it did for $X=\ell^{2}$. Given x such that $\|x\|<1$, pick α_{n} so that

$$
\alpha_{n}=\left(1-\sum_{j \neq n}\left|x_{j}\right|^{3}\right)^{1 / 3},
$$

set

$$
x^{(n)}=\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}, \alpha_{n}, x_{n+1}, x_{n+2}, \ldots\right),
$$

show that $\left\|x^{(n)}\right\|=1$, and then that $x^{(n)} \rightharpoonup x$.

Problem 3: Let X be a normed linear space, let M be a closed subspace, and let \hat{x} be an element not contained in M. Set

$$
d=\operatorname{dist}(M, \hat{x})=\inf _{y \in M}\|y-\hat{x}\| .
$$

Prove that $d>0$. Prove that there exists an element $\varphi \in X^{*}$ such that $\varphi(\hat{x})=1, \varphi(y)=0$ for $y \in M$, and $\|\varphi\|=1 / d$.

Solution: First we prove that $d>0$. Suppose M is a closed linear subspace, and that x is a point such that $\operatorname{dist}(M, x)=0$. Then there are $x_{n} \in M$ such that $\lim \left\|x_{n}-x\right\|=0$. Since M is closed and $x_{n} \rightarrow x$, we must have $x \in M$. Since $\hat{x} \notin M$, it follows that $d>0$.

Set $Z=\operatorname{Span}(M, \hat{x})$.

Prove that any $z \in Z$ can be written $z=y+\alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. (This is not hard.)

Define for $z \in Z$ the functional ψ via $\psi(z)=\alpha$, where α is the unique number such that $z=y+\alpha \hat{x}$. Then $\psi(\hat{x})=1$ and $\psi(y)=0$ for every $y \in M$.

We will now prove that the norm of ψ viewed as a functional on Z equals $1 / d$. To this end, set

$$
C=\sup _{z \in Z, z \neq 0} \frac{|\varphi(z)|}{\|z\|} .
$$

We then need to prove that $C=1 / d$. First observe that for any $z \in Z \backslash M$ we have

$$
\|z\|=\|y+\alpha \hat{x}\|=|\alpha|\left\|\frac{1}{\alpha} y+\hat{x}\right\| \geq|\alpha| d .
$$

(Observe that $\left\|\frac{1}{\alpha} y+\hat{x}\right\| \geq d$ since $(1 / \alpha) y \in M$ and the distance between any element in M and \hat{x} is at least d.) It follows that

$$
|\varphi(z)|=|\alpha| \leq \frac{\|z\|}{d} .
$$

This shows that $C \leq 1 / d$. To prove the opposite inequality, pick $y_{n} \in M$ such that

$$
\lim _{n \rightarrow \infty}\left\|\hat{x}-y_{n}\right\|=d
$$

Set $z_{n}=\hat{x}-y_{n}$. Then

$$
C \geq \lim _{n \rightarrow \infty} \frac{\left|\varphi\left(z_{n}\right)\right|}{\left\|z_{n}\right\|}=\lim _{n \rightarrow \infty} \frac{1}{\left\|z_{n}\right\|}=\frac{1}{d} .
$$

Finally, invoke the Hahn-Banach to assert the existence of an extension of ψ to all of X satisfying all requirements.

Problem 4: Let X be a normed linear space with a linear subspace M. Prove that the weak closure of M equals the closure of M in the norm topology.

Solution: Since the norm closure of any set is contained in the weak closure, all we need to prove is that any point not in the norm closure is also not in the weak closure.

Suppose $\hat{x} \notin \bar{M}$. From Problem 3, we know that there exists a functional $\varphi \in X^{*}$ such that $\varphi(\hat{x}-y)=1$ for any vector $y \in \bar{M}$. Since M is a subset of \bar{M}, this shows that there can be no sequence in M that converges weakly to \hat{x}.

