
Hints for homework set 12 — APPM5440 — Fall 2012

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on I = [0, 1]. For
f ∈ X, set ||f || = supx∈I |f(x)|. For f ∈ X, define

φ1(f) =

∫ 1

0
f(x) dx, φ2(f) = f(0), φ3(f) = f ′(1/2), φ4(f) = f ′(1/3).

Prove that φj ∈ X∗ for j = 1, 2, 3, 4. Prove that {φ1, φ2, φ3} forms a basis for X∗. Prove that
{φ1, φ2, φ4} does not form a basis for X∗.

Solution: You can easily prove that all the φj ’s are linear.

To prove that each φj is continuous, simply invoke the theorem that any linear map on a finite
dimensional space is continuous. For fun, let’s work it out explicitly for j = 1, 2:

|φ1(f)| ≤
∫ 1

0
|f(x)| dx ≤

∫ 1

0
||f || dx = ||f ||.

|φ2(f)| = |f(0)| ≤ ||f ||.
Proving directly that φ3 and φ4 are bounded takes a little more work.

To prove that {φ1, φ2, φ3} forms a basis, we first observe that since X has dimension three,
we know that X∗ also has dimension three. So all we need to prove is that the set is linearly
independent. Suppose

c1 φ1 + c2 φ2 + c3 φ3 = 0.

In other words, for every f ∈ X, we must have c1 φ1(f) + c2 φ2(f) + c3 φ3(f) = 0. By plugging in
f = 1, f = x, f = x2, we get three equations for c1, c2, and c3,

f = 1 ⇒ c1 + c2 = 0,

f = x ⇒ (1/2)c1 + c3 = 0,

f = x2 ⇒ (1/3)c1 + c3 = 0.

It is easy to show that the only solution is c1 = c2 = c3 = 0.

To prove that {φ1, φ2, φ4} does not form a basis, we will prove that they are linearly dependent.
Suppose

c1 φ1 + c2 φ2 + c4 φ4 = 0.

By plugging in f = 1, f = x, f = x2, we get three equations for c1, c2, and c4,

f = 1 ⇒ c1 + c2 = 0,

f = x ⇒ (1/2)c1 + c4 = 0,

f = x2 ⇒ (1/3)c1 + (2/3)c4 = 0.

This system has infinitely many solutions. For any t ∈ R, the triple {c1 = t, c2 = −t, c4 = −t/2}
is a solution. In particular, for t = 1 we find that

φ1 − φ2 −
1

2
φ4 = 0.
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Problem 2: Let X = ℓ2. Recall from class that every φ ∈ X∗ is of the form φ(x) =
∑
xn yn for

some y ∈ X. Set D = {x ∈ ℓ2 : ||x|| = 1}. Prove that the weak closure of D is the closed unit
ball in ℓ2. (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can

for any element x such that ||x|| < 1 explicitly construct a sequence (x(n))∞n=1 ⊂ D that weakly

converges to x, such that ||x(n)|| = 1.)

Set Y = ℓ3. What is Y ∗? Prove that the weak closure of the surface of the unit ball in ℓ3 is the
closed unit ball in ℓ3.

Solution: Fix x ∈ X such that ||x|| < 1. For n = 1, 2, 3, . . . , define αn via

αn =

√
1−

∑
j ̸=n

x2j .

Since ||x|| < 1, we know that 0 < αn ≤ 1 for every n. Then define x(n) as the sequence obtained
by swapping xn for αn. In other words

x(n) = (x1, x2, . . . , xn−2, xn−1, αn, xn+1, xn+2, . . . ).

We find that
||x(n)||2 = α2

n +
∑
j ̸=n

x2j = 1

so x(n) ∈ D for every n.

It remains to show that x(n) ⇀ x. Fix y ∈ X. Then

(x− xn, y) = (xn − αn) yn.

Since ||yn|| → 0 and |xn − αn| ≤ |xn|+ |αn| ≤ 2, we find that

lim
n→∞

(x− xn, y) = 0.

In treating the set Y , we first recall that the dual of ℓp for p ∈ (1,∞) is the set ℓq where 1/p+1/q =
1. When p = 3, we find q = 3/2. In other words, any φ ∈ Y 3 takes the form

φ(x) =

∞∑
n=1

xn yn,

where y ∈ ℓ3/2. The density argument now follows pretty much the same lines as it did for X = ℓ2.
Given x such that ||x|| < 1, pick αn so that

αn =

1−
∑
j ̸=n

|xj |3
1/3

,

set
x(n) = (x1, x2, . . . , xn−2, xn−1, αn, xn+1, xn+2, . . . ),

show that ||x(n)|| = 1, and then that x(n) ⇀ x.
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Problem 3: Let X be a normed linear space, let M be a closed subspace, and let x̂ be an element
not contained in M . Set

d = dist(M, x̂) = inf
y∈M

||y − x̂||.

Prove that d > 0. Prove that there exists an element φ ∈ X∗ such that φ(x̂) = 1, φ(y) = 0 for
y ∈M , and ||φ|| = 1/d.

Solution: First we prove that d > 0. Suppose M is a closed linear subspace, and that x is a point
such that dist(M,x) = 0. Then there are xn ∈ M such that lim ||xn − x|| = 0. Since M is closed
and xn → x, we must have x ∈M . Since x̂ /∈M , it follows that d > 0.

Set Z = Span(M, x̂).

Prove that any z ∈ Z can be written z = y + α x̂ for a unique α ∈ R and a unique vector y ∈ M .
(This is not hard.)

Define for z ∈ Z the functional ψ via ψ(z) = α, where α is the unique number such that z = y+αx̂.
Then ψ(x̂) = 1 and ψ(y) = 0 for every y ∈M .

We will now prove that the norm of ψ viewed as a functional on Z equals 1/d. To this end, set

C = sup
z∈Z, z ̸=0

|φ(z)|
||z||

.

We then need to prove that C = 1/d. First observe that for any z ∈ Z\M we have

||z|| = ||y + αx̂|| = |α| || 1
α
y + x̂|| ≥ |α| d.

(Observe that || 1αy+ x̂|| ≥ d since (1/α)y ∈M and the distance between any element in M and x̂
is at least d.) It follows that

|φ(z)| = |α| ≤ ||z||
d
.

This shows that C ≤ 1/d. To prove the opposite inequality, pick yn ∈M such that

lim
n→∞

||x̂− yn|| = d.

Set zn = x̂− yn. Then

C ≥ lim
n→∞

|φ(zn)|
||zn||

= lim
n→∞

1

||zn||
=

1

d
.

Finally, invoke the Hahn-Banach to assert the existence of an extension of ψ to all of X satisfying
all requirements.
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Problem 4: Let X be a normed linear space with a linear subspace M . Prove that the weak
closure of M equals the closure of M in the norm topology.

Solution: Since the norm closure of any set is contained in the weak closure, all we need to prove
is that any point not in the norm closure is also not in the weak closure.

Suppose x̂ /∈ M̄ . From Problem 3, we know that there exists a functional φ ∈ X∗ such that
φ(x̂ − y) = 1 for any vector y ∈ M̄ . Since M is a subset of M̄ , this shows that there can be no
sequence in M that converges weakly to x̂.


