Homework set 12 - APPM5440 — Fall 2012

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on $I=[0,1]$. For $f \in X$, set $\|f\|=\sup _{x \in I}|f(x)|$. For $f \in X$, define

$$
\varphi_{1}(f)=\int_{0}^{1} f(x) d x, \quad \varphi_{2}(f)=f(0), \quad \varphi_{3}(f)=f^{\prime}(1 / 2), \quad \varphi_{4}(f)=f^{\prime}(1 / 3)
$$

Prove that $\varphi_{j} \in X^{*}$ for $j=1,2,3,4$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis for X^{*}. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis for X^{*}.

Hint: Any $f \in X$ can be written $f(x)=a+b x+c x^{2}$ for unique a, b, and c.
Problem 2: Let $X=\ell^{2}$. Recall from class that every $\varphi \in X^{*}$ is of the form $\varphi(x)=\sum x_{n} y_{n}$ for some $y \in X$. Set $D=\left\{x \in \ell^{2}:\|x\|=1\right\}$. Prove that the weak closure of D is the closed unit ball in ℓ^{2}. (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that $\|x\|<1$ explicitly construct a sequence $\left(x^{(n)}\right)_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $\left\|x^{(n)}\right\|=1$.)

Set $Y=\ell^{3}$. What is Y^{*} ? Prove that the weak closure of the surface of the unit ball in ℓ^{3} is the closed unit ball in ℓ^{3}.

Problem 3: Let X be a normed linear space, let M be a closed subspace, and let \hat{x} be an element not contained in M. Set

$$
d=\operatorname{dist}(M, \hat{x})=\inf _{y \in M}\|y-\hat{x}\| .
$$

Prove that $d>0$. Prove that there exists an element $\varphi \in X^{*}$ such that $\varphi(\hat{x})=1, \varphi(y)=0$ for $y \in M$, and $\|\varphi\|=1 / d$.

Hint: Set $Z=\operatorname{Span}(M, \hat{x})$. Prove that any $z \in Z$ can be written $z=y+\alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. Define ψ as a suitable functional on Z, and then extend it to X using the Hahn-Banach theorem.

Problem 4: Let X be a normed linear space with a linear subspace M. Prove that the weak closure of M equals the closure of M in the norm topology. Hint: Use Problem 3.

Problem 5: Prove that the following statements follow from the Hahn-Banach theorem:
(a) For any $x \in X$, there is a $\varphi \in X^{*}$ such that $\|\varphi\|=1$ and $\varphi(x)=\|x\|$.
(b) For any $x \in X,\|x\|=\sup _{\|\varphi\|=1}|\varphi(x)|$.
(c) If $x, y \in X$ and $x \neq y$, there is a $\varphi \in X^{*}$ such that $\varphi(x) \neq \varphi(y)$.
(d) For $x \in X$, define $F_{x} \in X^{* *}$ by setting $F_{x}(\varphi)=\varphi(x)$. Prove that the map $x \mapsto F_{x}$ is a linear isometry from X to $X^{* *}$.

Note that we did this in class - try to repeat the proof without looking at the notes! (We did not prove that the map $x \mapsto F_{x}$ is linear, you need to do this yourself.)

