Homework set 11 — APPM5440 — Fall 2012

From the textbook: 5.11, 5.12, 5.13, 5.15a, (5.16), 5.17.

Problem 1: Let X be a Banach space, and let $A, B \in \mathcal{B}(X)$ be two operators such that AB = BA. Prove that $e^{A+B} = e^A e^B$.

Problem 2: For n = 1, 2, 3, ..., we define the operator T_n on $X = l^2(\mathbb{N})$ by

$$T_n(x_1, x_2, x_3, \dots) = \frac{1}{\sqrt{n}}(x_1, x_2, \dots, x_n, 0, 0, \dots).$$

Prove that $T_n \in \mathcal{B}(X)$. Does T_n converge to anything in norm? Strongly?

Problem 3: Let X be an infinite dimensional Banach space and let $T \in \mathcal{B}(X)$ be a compact operator such that $\ker(T) = \{0\}$. Prove that $\operatorname{ran}(T)$ is not closed.

Problem 4: (Lax equivalence) Let X and Y be Banach spaces, let $A \in \mathcal{B}(X, Y)$ be an operator with a continuous inverse, let $f \in Y$, and consider the equation

A u = f.

Now suppose that we have "some mechanism" for approximating the equation to any given precision. In other words, given $\varepsilon > 0$, we can construct A_{ε} that approximates A, and f_{ε} that approximates f, and such that the equation

$$A_{\varepsilon} u_{\varepsilon} = f_{\varepsilon}$$

can be solved. (Typically, A_{ε} is a finite dimensional operator, so that the approximate equation can be solved by solving a finite system of linear algebraic equations.) We say that

- The approximation is consistent if $A_{\varepsilon} \to A$ strongly.
- The approximation is *stable* if there is an $M < \infty$ such that $||A_{\varepsilon}^{-1}|| \leq M$ for all $\varepsilon > 0$.
- The approximation is *convergent* if $u_{\varepsilon} \to u$ whenever $f_{\varepsilon} \to f$ (in norm).

Suppose that the approximation scheme is consistent. Prove that then:

The scheme is convergent \Leftrightarrow The scheme is stable

Hint: The solution is in the text book, but please try it yourself before looking!

Note: In practice, variations of this result are often used in the context of approximating partial differential equations via, e.g., finite elements or finite differences. In this case, the operator is not bounded — this assumption can be done away with.