Homework set 10 — APPM5440 — Fall 2012

5.1, 5.3, 5.4, 5.5 (feel free to assume that k is non-negative), 5.7, 5.8.

Problem 1: Set $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, and let $A \in \mathcal{B}(X,Y)$. Let

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

denote the representation of A in the standard basis.

- (a) Equip X and Y with the ℓ^1 norms. Compute ||A||.
- (b) Equip X and Y with the ℓ^2 norms. Compute ||A||.
- (c) Equip X and Y with the ℓ^{∞} norms. Compute ||A||.

Problem 2: Suppose that X is an NLS and that Y is a Banach space. Let Ω be a dense subset of X, and let

$$T: X \to Y$$

be a linear function such that

$$M=\sup_{x\in\Omega,\ x\neq0}\frac{||Tx||}{||x||}<\infty.$$

Prove that there exists a unique linear map $\bar{T}: X \to Y$ such that $\bar{T}x = Tx$ for every $x \in \Omega$. Prove that ||T|| = M.