Homework set 9 - APPM5440 — Fall 2012

From the textbook: 4.1, 4.2, 4.3, 4.5a, 4.6.

Problem 1: Set $X=\mathbb{R}^{2}$ and $Y=\mathbb{R}$, and define $f: X \rightarrow Y$ by setting $f\left(\left[x_{1}, x_{2}\right]\right)=x_{1}$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map closed sets to closed sets.

Problem 2: Prove that the co-finite topology is first countable if and only if X is countable.
Problem 3: Prove that the co-finite topology on \mathbb{R} weaker than the standard topology.

The last two problems are entirely optional.

Problem 4: The Hausdorff property is only one of many so called "separability" conditions on topological spaces. As an example, we say that a topological space X is T_{j}, for $j=0,1,2,3,4$ if:
T_{0} : Given $x, y \in X$, there either exists an open set containing x but not y, or vice versa.
T_{1} : Given $x, y \in X$, there exists an open set that contains x but not y.
T_{2} : Given $x, y \in X$, there exist disjoint open sets G, H such that $x \in G, y \in H$. (Note that T_{2} is the same as Hausdorff.)
$T_{3}: X$ is T_{1}, and: Given any closed set A, and any point $x \in A^{\mathrm{c}}$, there exist disjoint open sets G, H such that $x \in G, A \subseteq H$.
T_{4} : Given any two closed disjoint sets A and B, there exists disjoint open set G, and H such that $A \subseteq G, B \subseteq H$.

Prove that if $i<j$, then any T_{j} space is T_{i}. Prove that the co-finite topology is T_{1} but not T_{2}. Prove that a topological space is T_{1} if and only if the set $\{x\}$ is closed for every $x \in X$.

Problem 5: Consider the set $X=\mathbb{R}$. Let \mathcal{S} denote the collection of sets of the form $(-\infty, a]$ or (a, ∞) for $a \in \mathbb{R}$.
(a) Let \mathcal{B} denote the collection of sets obtained by taking finite intersections of sets in \mathcal{S}. Prove that if $G \in \mathcal{B}$, then either G is empty, or $G=(a, b]$ for some a and b such that $-\infty<a<b<\infty\}$.
(b) Let \mathcal{T} denote the topology generated by the base \mathcal{B}. Prove that all sets in \mathcal{B} are both open and closed in \mathcal{T}.
(c) Prove that \mathcal{T} is first countable but not second countable. Hint: For any $x \in X$, any neighborhood base at x contains at least one set whose supremum is x.
(d) Prove that \mathbb{Q} is dense in \mathcal{T}. (This proves that (X, \mathcal{T}) is separable but not second countable.)
(e) Prove that (X, \mathcal{T}) is not metrizable.

